

 1024cores

About This EPUB File

This EPUB packages Dmitry Vyukov's great blog articles for offline reading. This file is not affiliated with Dmitry Vyukov himself. So please don't contact him about the EPUB packaging and formatting problems. This is provided best-effort basis from one of his fans.

The original articles are licensed under a Creative Commons Lisence.

Home

Hi!

My name is Dmitry Vyukov, and I'm going to share here various information about lockfree, waitfree, obstructionfree synchronization algorithms and data structures, scalability-oriented architecture, multicore/multiprocessor design patterns, high-performance computing, threading technologies and libraries (OpenMP, TBB, PPL), message-passing systems and related topics.

I'm mostly interested in shared-memory system, so if you are looking for information about clusters, web-farms, distributed databases and the like, it's the wrong place. I am also not going to write about GPU-related things.

New content is periodically added, so you may consider subscribing to the RSS feed, or following the accompanying blog.

I'm not a native English speaker, so forgive me any mistakes.

Lockfree Algorithms

In this section I am going to share my experience regarding design and implementation of scalable synchronization algorithms. Note that scalability does not necessary imply lock-freedom or wait-freedom, they are actually orthogonal. However, sometimes scalable algorithms are also lockfree or waitfree at least partially.

Here you will find some articles about general underlying aspects, and some with descriptions and code for specific synchronization algorithms.

Move on to Introduction

Introduction

I bet you had heard terms like "lockfree" and "waitfree". So what it's all about? Let's start with some definitions.

Wait-freedom

Wait-freedom means that each thread moves forward regardless of external factors like contention from other threads, other thread blocking. Each operations is executed in a bounded number of steps. It's the strongest guarantee for synchronization algorithms. Wait-free algorithms usually use such primitives as atomic_exchange, atomic_fetch_add (InterlockedExchange, InterlockedIncrement, InterlockedExchangeAdd, __sync_fetch_and_add), and they do not contain cycles that can be affected by other threads. atomic_compare_exchange primitive (InterlockedCompareExchange, __sync_val_compare_and_swap) is usually not used, because it is usually tied with a "repeat until succeed" cycle.

Below is an example of a wait-free algorithm:

void increment_reference_counter(rc_base* obj)

{

atomic_increment(obj->rc);

}

void decrement_reference_counter(rc_base* obj)

{

if (0 == atomic_decrement(obj->rc))

delete obj;

}

Each thread is able to execute the function in a bounded number of steps regardless of any external factors.

Lock-freedom

Lock-freedom means that a system as a whole moves forward regardless of anything. Forward progress for each individual thread is not guaranteed (that is, individual threads can starve). It's a weaker guarantee than wait-freedom. Lockfree algorithms usually use atomic_compare_exchange primitive (InterlockedCompareExchange, __sync_val_compare_and_swap).

An example of a lockfree algorithm is:

void stack_push(stack* s, node* n)

{

node* head;

do

{

head = s->head;

n->next = head;

}

while (! atomic_compare_exchange(s->head, head, n));

}

As can be seen, a thread can "whirl" in the cycle theoretically infinitely. But every repeat of the cycle means that some other thread had made forward progress (that is, successfully pushed a node to the stack). A blocked/interrupted/terminated thread can not prevent forward progress of other threads. Consequently, the system as a whole undoubtedly makes forward progress.

Obstruction-freedom

Obstruction-freedom guarantee means that a thread makes forward progress only if it does not encounter contention from other threads. That is, two threads can prevent each other's progress and lead to a livelock. It's even weaker guarantee than loсk-freedom. This guarantee may look a bit strange at first. However, note that (1) blocked/interrupted/terminated threads can not prevent progress of other threads, and (2) obstruction-free algorithms can be faster than lockfree algorithms.

I am unable to come up with a single example, so I refer you to the original paper Obstruction-Free Synchronization: Double-Ended Queues as an Example.

Termination-safety

Waitfree, lockfree and obstruction-free algorithms provide a guarantee of termination-safety. That is, a terminated thread does not prevent system-wide forward progress.

Blocking Algorithms

It's the weakest guarantee - basically all bets are off, the system as a whole may not make any forward progress. A blocked/interrupted/terminated thread may prevent system-wide forward progress infinitely. Mutex-based algorithms are also amenable to deadlocks, and a deadlocked system clearly makes no forward progress.

Practical Implications

Don't get it as it's impossible to create mutex-based programs what make forward progress. It's indeed possible to create mutex-based programs that do make eventual forward progress, and there are zillions of examples of it out there. Wait-freedom, loсk-freedom are theoretical properties that consider kind of corner cases. However, there are some practical implications as well:

1. With lockfree algorithms a thread that can make forward progress is always one of the currently running threads, and thus it actually makes forward progress. With mutex-based algorithms there is also usually a thread that can make forward progress, however it may be a currently non-running thread, and thus no actual forward progress happens (at least until, for example, a page will be loaded from disk and/or several context switches happen and/or some amount of active spinning happens).

2. Waitfree, lockfree algorithms can be used in some contexts where lock-based algorithms can not be used. For example, it's generally unsafe to use locks in signal handlers, because the lock can be currently acquired by the preempted thread, and it instantly leads to a deadlock. Another example is hard real-time systems, where wait-free algorithms are preferable because of strict upper bounds on execution time.

3. In some systems (most notably in multi-process systems that use inter-process shared memory for communication) threads can be unexpectedly terminated due to timeouts, fatal failures or by operator's command. In such systems mutexes are inherently unsafe to use, because, if a terminated thread holds a mutex, the mutex will be never released (yes, there are so called robust mutexes, but that's another story, and in the end they still require usage of lockfree algorithms or something like that).

Performance/scalability

As you may have noticed, I did not say anything about performance yet. That's right - the terms are about forward progress guarantees, and are orthogonal to performance. Of course, some lockfree algorithms are faster than mutex-based algorithms, but only by accident. In general lockfree algorithms are slower than analogous algorithms not burdened with forward progress guarantees (think of Quality-Of-Service vs. Best-Effort). Let me refine the point, here I am looking from the point of view of what guarantee your system requires. Lockfree is a subset of blocking (stricter guarantee), so if your system is Ok with blocking (does not require any particular forward progress guarantees), then you can choose the fastest algorithm from blocking/lockfree/wait-free. If your system requires lockfree forward progress guarantees, then you can choose only from lockfree/waitfree. And if your system requires wait-free guarantees, then you can choose only from wait-free algorithms. So blocking is at least as fast as lockfree, while it can be faster (when it happened so that the fastest known algorithm is at least partially blocking).

Move on to First things first

First Things First

Ok, so what is the most important thing regarding synchronization algorithm's performance and scalability? I frequently hear the answer that it's a number of atomic RMW (read-modify-write) instructions (like Compare-And-Swap or Fetch-And-Add) per operation. It's dead wrong. The most important thing is amount of write sharing per operation. Numerical measure of write sharing is number cache-line transfers per operation, and the ideal value is 0. If there is 0 cache-line transfers per operations amortized (we are perfectly Ok with amortization here), then the algorithm is perfectly scalable. Anything other than 0, even 1, is a serious problem for scalability.

To not sound proofless, let's look at some graphs. The first graph is the scalability of plain write operations (x86 MOV instruction) in two different setups. In the first "private" setup each thread writes to a dedicated variable situated in a separate cache-line. In the second "shared" setup each thread writes to a dedicated variable, but all the variables are situated in a single cache-line:

The second graph is the same for atomic RMW operations (x86 LOCK XADD instruction):

Don't you notice any regularity yet? Let's also that a look at the same graph for plain loads (x86 MOV instruction):

And not let's put it all together onto a single graph:

So, what conclusions can we make?

First, if there is write sharing system ungracefully degrades, the more threads we add the slower it becomes.

Second, if there is no write sharing system linearly scales. Yes, atomic RMW operations are slower than plain stores and loads, but they do scale linearly in itself (by the way, cost of atomic RMW operations becomes smaller and smaller with each new processor generation, there are no fundamental reasons why they must be any slower and similar non-atomic read-modify-write sequence).

Third, loads are always scalable. Several threads are able to read a memory location simultaneously. Read-only accesses are your best friends in a concurrent environment.

If I would be asked to choose a single thing that you will get away, I undoubtedly would choose exactly this - the negative effect of write sharing on scalability.

Move on to Your Arsenal

Your Arsenal

So what primitives are in your arsenal for implementation of advanced synchronization algorithms?

Compare-And-Swap

Perhaps, it's the most famous primitive, it's other names are CAS, compare-and-exchange, compare-and-set, std::atomic_compare_exchange, InterlockedCompareExchange, __sync_val_compare_and_swap, LOСK CMPXCHG and other. It's an instance of so-called atomic RMW (read-modify-write) operation. It's pseudo-code is:

T compare-and-swap(T* location, T cmp, T xchg)

{

do atomically

{

T val = *location;

if (cmp == val)

*location = xchg;

return val;

}

}

That is, it stores a new value (xchg) into a memory location only if it contains an expected value (cmp), in either case it returns a value that was stored in the location when the operation begins. And all that is done atomically on hardware level.

Fetch-And-Add

Also atomic RMW operation, and also conducted atomically in hardware. Aka atomic_fetch_add, InterlockedExchangeAdd, LOСK XADD. Below is the pseudo-code:

T fetch-and-add(T* location, T x)

{

do atomically

{

T val = *location;

*location = val + x;

return val;

}

}

There are also variations like fetch-and-sub, fetch-and-and, fetch-and-or, fetch-and-xor.

Exchange

Atomic RMW. Aka atomic_exchange, XCHG. Dead simple, but not less useful:

T exchange(T* location, T x)

{

do atomically

{

T val = *location;

*location = x;

return val;

}

}

Atomic loads and stores

They are not RMW (read-modify-write) operations, they are just independent atomic loads and stores. They are frequently unfairly underestimated. However, they play fundamental role in synchronization algorithms, and they are what you should generally strive for - atomic loads and stores are better/cheaper/faster than atomic RMW operations.

Mutexes and the company

Why not? The most stupid thing one can do is try to implement everything in a non-blocking style (of course, if you are not writing infantile research paper, and not betting a money). Generally it's perfectly Ok to use mutexes/condition variables/semaphores/etc on cold-paths. For example, during process or thread startup/shutdown mutexes and condition variables is the way to go.

Now, let's move from the abstract world closer to the reality.

On Windows platform the primitives are available in the form of InterlockedXXX functions, and generally you should prefer Microsoft Visual C++ intrinsics starting from underscore _InterlockedXXX.

In GNU world they available in the form of gcc __sync intrinsics.

On Solaris they are available in the form of atomic_ops.

There is also quite portable libatomic_ops.

And hopefully all that zoo will be unified under umbrella of C1x/C++0x in the form of language-provided atomic primitives.

And in Java world there is java.util.concurrent.atomic.

And in .NET world there is System.Threading.Interlocked.

Move on to So what is a memory model? And how to cook it?

So what is a memory model? And how to cook it?

Table on Contents:

Visibility

Ordering

Applied Ordering

Compiler vs. Hardware

A memory model in general is a very broad term, and it determines a lot of things. For example, such an evident thing like pointer size (8, 16, 32, 64 bits) is determined by a memory model. Another good example is what is (was) called... well, a memory model, if you remember those days, - TINY, SMALL, COMPACT, LARGE, FLAT. There are also other things like segmentation, paging and cache associativity.

What I am going to discuss here is memory models in the context of multi-threading/concurrency. There are 3 fundamental properties: Atomicity, Ordering and Visibility; and 2 levels: Compiler and Hardware. In order to implement and reason about any synchronization algorithm you need clear understanding of them.

Atomicity

Atomicity is the most obvious and understood property. I hope you understand what it means in general - indivisibility of an operation, that is, an operation is either does not happen at all or fully completed. No intermediate states and no partial effects can be observed by other threads.

There are 2 classes of operations in the context of atomicity: (1) read-modify-write (RMW) operations and (2) loads and stores. Some people associate atomicity only with RMW operations like compare-and-swap and fetch-and-add; however, atomic loads and stores are no less important.

So, regarding atomic RMW operations. A memory model along with instruction set determine what RMW operations are available and which of them are atomic. Modern processors usually provide at least compare-and-swap (CAS) operation (or equivalent load-linked/store-conditional, LL/SC), and potentially some other atomic RMW operations. Another crucial aspect is whether atomic RMW operations can operate on word/pointer-sized memory locations or also on double-word-sized memory locations (for example, on 128-bit memory locations on 64-bit architecture). On modern IA-32 and Intel 64 architectures double-word atomic operations are available, however they were not available on some early 64-bit processors (to prevent confusion, I call double-word CAS - DWCAS). There is also mostly mythical double-CAS (DCAS, or CAS2) which can operate on 2 disjoint work-sized memory locations - not available on most modern commodity hardware (however, you may encounter it in academic papers on lock-free algorithms).

Regarding loads and stores. Memory model along with instruction set specifies whether plain loads and stores are atomic or not. Typical guarantee for all modern commodity hardware is that aligned word-sized loads and stores are atomic. For example, on x86 architecture (IA-32 and Intel 64) 1-, 2-, 4-, 8- and 16-byte aligned loads and stores are all atomic (that is, plain MOV instruction, MOVQ and MOVDQA are atomic).

For details you must consult your processor or programming language documentation.

For example, regarding IA-32 and Intel 64 architectures consult Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System Programming Guide, Part 1 (Chapter 8. Multiple-Processor Management).

Regarding IA-64 (Itanium) consult Intel® Itanium® Architecture Software Developer’s Manual Volume 2: System Architecture (MP Coherence and Synchronization).

Regarding SPARC consult The SPARC Architecture Manual (Chapter 8. Memory Models).

Move on to Visibility

Visibility

Visibility determines when other threads will see changes made by the current thread, and whether they will see them at all. A lot of people endeavour to do something special in order to ensure visibility (like placing memory fences). However, in practice it's the most boring property, because on cache-coherent architectures (read - on all modern commodity architectures - IA-32, Intel 64, IA-64, SPARC, POWER) visibility is ensured automatically. Namely, each write is automatically propagated to all other processors/cores in a best-effort manner. There are no ways to prevent nor to speed it up. Period.

On non cache-coherent architectures changes are indeed not propagated automatically, and you need to do something special. However, such architectures are rare and unique (I saw no such archs), so I think there is no sense in discussing them in general.

However, there is an interesting deviation - on x86 architecture non-temporal stores (made with instructions like MOVNTDQ) and stores made to WC (Write-Combining) region of memory are effectively non cache-coherent. That is, they will be propagated to other processors/cores only before execution of SFENCE instruction, MFENCE instruction, LOCKed instruction or other serializing actions.

Move on to Ordering

Ordering

In the context of single-threaded execution hardware provides so called sequential self-consistency, that is, for a program everything looks like all memory accesses are done in program order. In reality memory accesses can be made out of program order, however hardware masks that from a single-threaded program. For a multi-threaded program situation radically changes - threads can see each other's memory accesses in weird order. Memory access ordering is the most involved property of a memory model, and it requires the greatest amount of developer's attention.

So, a memory model determines what re-orderings are possible (relatively to program order). For required ordering ensuring hardware usually provides special instructions called memory fences/barriers, which prevent some re-ordering types around them. There are 2 types of memory fences - bi-directional (store-store, load-load) and tied to memory accesses (acquire and release). Bi-directional fences prevent one type of memory accesses (load or store) from "sinking below" them, while other type of memory accesses (can be the same, though) from "hoisting above" them. For example, store-load fence prevents stores from sinking below and loads from hoisting above (however, stores can hoist above it and loads may sink below it).

Fences tied to memory accesses prevent all memory accesses from moving above (acquire fence) or below (release fence); for example, load-acquire is a load which simultaneously prevents any other memory accesses from hoisting above it (while any memory accesses can sink below it).

Let me illustrate it with some pictures. So, below is an informal graphical representation of store-load bi-directional fence:

And here is informal graphical representation of load-acquire:

Move on to Applied Ordering

Applied Ordering

An important moment regarding memory fences is that it's always a game of two. It's about mutual ordering of memory accesses as how they are perceived by other threads, and thus there is always "this" thread and "that" thread.

Below is a short crash-course in memory ordering on an example of the most fundamental synchronization pattern related to data transfer between 2 threads:

// thread 1

data = 37;

flag = 1;

// thread 2

if (flag == 1)

printf("%d", data);

So, we want to ensure that thread 2 either prints nothing or prints "37". Thus we need to prevent the following reordering in thread 1:

flag = 1;

data = 37;

and the following reordering in thread 2:

tmp = data;

if (flag == 1)

printf("%d", tmp);

It's easy to conclude that either of the above reorderings will lead to printing of a random number.

First, we need to answer 2 questions:

1. What are synchronization actions (visibility of effects of which is ensured by cache-coherency)?

In our example synchronization actions are store and load of 'flag'. In other words, 'flag' is a synchronization variable.

2. What are associated data (visibility of which is ensured by correct ordering of operations)?

In our example associated data is variable 'data'.

Generally we want to ensure correct ordering of accesses to associated data with respect to synchronization actions. We can do it with both types of memory fences, let's start with bi-directional fences:

// thread 1

data = 37;

store-store fence;

flag = 1;

// thread 2

if (flag == 1)

{

load-load fence;

printf("%d", data);

}

And the same with access-tied fences:

// thread 1

data = 37;

store_release(flag, 1);

// thread 2

if (load-acquire(flag) == 1)

printf("%d", data);

Let's illustrate it with an illustration:

So, generally, visibility of "primary" synchronization actions is ensured by cache-coherency in a best-effort manner, that is, they just become visible in some future point in time. While visibility of "secondary" associated data is ensured by correct ordering of accesses to the data with respect to "primary" synchronization actions.

Another good introduction into memory ordering is Memory Ordering in Modern Microprocessors. Part 1 and Part 2 (by Paul E. McKenney).

Move on to Compiler vs. Hardware

Compiler vs. Hardware

As I said before, there are 2 levels of each memory model property - compiler level and hardware level.

For example, let's consider visibility. Consider the following C/C++ program:

g_var = 0;

for (...)

{

...

g_var = ...;

...

}

Hardware visibility guarantees do not relevant for us yet, because C/C++ compiler can transform the program as:

register = 0;

for (...)

{

...

register = ...;

...

}

g_var = register;

And our stores to 'g_var' won't be visible to other threads until loop end. So, first we need to ensure that our high-level language memory access will be compiled to proper machine code memory accesses, and only then hardware guarantees will come into play.

The same for ordering - if a compiler will reorder 2 memory accesses during compilation, hardware can't help - there is no way to restore broken ordering. So first we need to ensure ordering of memory accesses on compiler level, and then ensure ordering on hardware level.

And the same for atomicity - if in C/C++ program we have a load of 64-bit variable, in 32-bit mode it will most likely result in 2 separate 32-bit loads, and there is no way how hardware can restore atomicity - they are not already atomic.

However, if your language provides solid abstract memory model (like C1x, C++0x, Java or CLI/.NET) then you are working on that level only. For example, in Java/CLI loads and stores of object references are atomic, and you basically do not care on what hardware the program will run - compiler will ensure "end-to-end" atomicity by whatever means it finds it more efficient or whatever. Or if you use C1x atomic_store_explicit(memory_order_release), you also do not care about underlying mechanics - compiler have to ensure claimed guarantees on all levels.

One last note about visibility and abstract memory models. As far as I know, both C1x/C++0x/Java/CLI memory models do not guarantee visibility formally, that is, most multi-threaded programs are perfectly allowed to hang and make no forward progress - changes just won't propagate between threads. It's very involved question related to cooperative scheduling, fairness and variations in hardware, it's very difficult to specify formally, and it's farmed out to QOI (Quality Of Implementation). Don't afraid that, all sane practical language implementations do guarantee best-effort visibility.

Move on to Scalability Prerequisites

Scalability Prerequisites

Creation of efficient scalable concurrent data structures is a kind of black magic. There is no recipes for that. What we should do is carefully analyze usage patterns for a data structure, and then try to satisfy all user requirements and scalability prerequisites with all possible means.

So what are the scalability prerequisites?

First, no mutexes on fast-paths ever (for slow-paths they are Ok, and even recommended because of the usage simplicity). There are several problems with mutexes. Mutexes limit and sacrifice concurrency to provide simplicity (anti-threads, sort of). Then, they provoke write-sharing (cache-coherence traffic) on every operation (even otherwise read-only). So, they just does not scale, forget about them.

Second, logically read-only operations must be implemented as a physically read-only operations. So, what does it mean? During logically read-only operation one should not do any single write to a shared memory location. Note that writes may be hidden inside of some component, in particular most of the reader-writer mutexes do writes to internal state in read_lock()/read_unlock(), such writes are no less harmful. Writes to a shared state provoke cache-coherence traffic, large amounts of which quickly brings any concurrent system to it's knees.

Due to specifics of implementation of cache-coherence in modern concurrent hardware (see MOESI protocol), reads to a shared state have 100% scalability (i.e. any number of threads can read from a memory location simultaneously); while writes to a shared state have zero scalability (i.e. at most 1 thread can write to a memory location at any given moment in time).

Third, no writes to a centralized shared state on fast-paths. Writes to a shared state are generally unavoidable for most concurrent data structures. However we can distinguish 4 kinds of a shared state for our needs:

1. Mostly private state. A statistics counter held in thread-local storage is a good example. Such counter is frequently written by an owner thread, and very infrequently read by some other thread. This kind of a shared state generally is of no danger for scalability.

2. Mostly read-only state. That's a state with a very high read-to-write ratio (some real-world data-structures actually have read-to-write ratio of 10^7 and higher). Such state also is of no danger for scalability.

3. Decentralized shared state. That's a shared state which is frequently written to, but is physically distributed. A good example is a hash map with an array of independent buckets. When threads concurrently work with such data structure their activity is physically scattered across the array. And consequently collisions during accesses to a memory location are less frequent. This kind of shared state may or may not represent a danger for scalability depending on distribution factor, number of threads, access patterns and other details.

4. Centralized shared state. That's a shared state which is frequently written to, and is physically centralized. A typical example is a counter of elements in a container, which is mutated on every insert and remove operation. That's a scalability killer number one, there is no way to make it scalable. A typical mistake is to maintain such a state with atomic RMW (read-modify-write) operations (InterlockedXXX(), __builtin_sync_XXX(), atomic_XXX()), and think that since there is no mutexes, they should be scalable. It does not work that way, just say no to a centralized shared state.

Fourth, be aware of false sharing. Due to performance reasons cache-coherence protocols work with whole cache lines, rather than with separate bytes, words or C-language variables. I.e if two variables are contained within a single cache line, for the hardware they look like a single variable with all implications on scalability. So everything said above must be actually extended from distinct memory locations to cache lines. Size of a cache-line is architecture dependent, there are/was architectures with cache line sizes from 16 bytes to 4 kilobytes. However for modern Intel x86 processors (IA-32, Intel 64) cache-line size is fixed to 64 bytes, i.e. 16 consecutive words for IA-32 and 8 consecutive words for Intel 64.

Fifth, atomic RMW operations have some fixed associated costs. For modern Intel x86 processors cost of a single atomic RMW operation (LOCK prefixed instruction) is some 40 cycles (depends on a particular model, and steadily decreases). The cost comes mostly from frequently-unneeded embed full memory fence (so when Intel will separate atomicity and memory ordering, you may cross out this rule). However, the cost is fixed and does not affect scalability, so is far less important than above-outlined scalability-affecting points. Of course, all well-known single-threaded optimization rules are still applicable too. So we may include into the fifth point also algorithmic optimality and general implementation quality.

If we summarize we get the following scalability mantra:

The most important aggregate metric for a concurrent data structure is a mean number of cache line transfers between threads per operation.

All possible means must be employed to reduce the value as much as possible.

That's “why” and “what” need to be achieved. Compliance with the above guidelines ensures linear scalability if possible, and just maximum possible scalability otherwise. It's worth noting that some data structures inherently can't be implemented with the linear scalability, for example producer-consumer queue with the strict FIFO ordering requirement (it's 'strict FIFO ordering' part that is problematic, because it inherently requires communication between threads on every enqueue operation).

Move on to False-sharing

False-sharing

Entry in Parallel Programming with .NET blog "Most Common Performance Issues in Parallel Programs" and recent article in MSDN ".NET Matters: False Sharing" have attracted my attention. Basically they both suggest to eliminate false sharing. Wrong! Wrong! Wrong! It's not the whole truth, so to say. So if authors were under oath in the virtual IT court, they would have to be arrested. Fortunately they weren't under oath :)

The first thing one has to say in that context is:

1. Eliminate sharing. Period. Not false sharing, just sharing. It's sharing that has huge performance penalties. It's sharing that changes linear scalability of your application to super-linear degradation. And believe me, hardware has no means to distinguish false sharing from true sharing. It can't penalize only false sharing, and handle true sharing without any performance penalties.

Second thing one has to say in that context is:

2. Put things that must be close to each other... close to each other. Assume following situation. In order to complete some operation thread has to update variable X and variable Y. If variables are situated far from each other (on different cache lines), then thread has to load (from main memory, or from other processor's cache) 2 cache lines instead of 1 (if variables are situated close to each other). Effectively this situation can be considered the same as false-sharing, because thread places unnecessary work on interconnects, thus degrading performance and scalability.

Points 1 and 2 can be aggregated as:

1+2. Do pay attention to data layout. This was important in the 60's. This is even more important in the multicore era.

Only after that one can also add:

3. Sometimes sharing can show up when you are not expecting it, i.e false sharing. This is important to eliminate false sharing too... etceteras... [insert here contents of False Sharing article]

If one says only point 3, well, it's basically senseless. And sometimes it can even hurt.

Let's consider simple example:

long volatile g_operation_count = 0;

void collect_statistics()

{

InterlockedIncrement(&g_operation_count);

}

What does naive programmer think about it? Hmmm... Let's see... I use "fast" non-blocking interlocked operations. Good!... Hmmm... False sharing. Let's see... Hmmm... Here is no false sharing. Good! So my program fully conforms to recommendations of experts.

Rubbish! It's a dead-slow, completely non-scalable program.

Now let's apply consistent rules to the example. First of all we have to do something like this:

long volatile g_operation_count [MAX_THREAD_COUNT] = {};

void collect_statistics()

{

InterlockedIncrement(&g_operation_count[get_current_thread_id()]);

}

It's good distributed design. When we need aggregate number of operations we just sum up all thread local counters.

Only at this point we can remember about false-sharing and put the final touches to the code:

struct counter_t

{

long volatile count;

char pad [CACHE_LINE_SIZE - sizeof(long)];

}

counter_t g_operation_count [MAX_THREAD_COUNT] = {};

void collect_statistics()

{

InterlockedIncrement(&g_operation_count[get_current_thread_id()].count);

}

Ok, this distributed version is also fast and scalable. It has linear scalability and can be faster up to 100x on modern multi-core hardware as compared with original version.

So, point 1+2 is a kind of general rule, while point 3 is just a refinement to them.

Why people don't say the whole truth? I don't know. I don't beleive that authors don't aware of the problem. Maybe they think that it's obvious. The practice shows that it's not...

Now you may move to the following applied sections:

Reader-Writer Problem

Producer-consumer Queues

Reader-Writer Problem

Reader-writer problem is one of fundamental problems in concurrent systems. In a single-threaded environment type of access (read or write) is mostly irrelevant - once a thread has a reference to an object, it can do whatever access it wants (and in most cases you can change read to write w/o any problems). However, in a concurrent environment type of access is fundamental, because a plurality of threads can read data w/o any synchronization and conflicts, while write access must be exclusive (that is, at most 1 thread at a time).

Hey, there are reader-writer mutexes available, so what's the problem?

The problem is that traditional reader-writer mutexes do not scale. Period. At all. They degrade ungracefully under high reader load. Below are results from a synthetic benchmark of pthread_mutex_t, pthread_spinlock_t and pthread_rwlock_t (locked only for read access) on a 4 processor x 4 core AMD machine:

Huh? How it is to you? Not that bad? Ok, let's add a line for what we would like to observe, that is a perfect linear speedup of pthread_spinlock_t:

In order to a reader-writer mutex to scale reader's time under mutex must be significant, on the order of, let's say, 10'000 cycles. And the more hardware threads you have the longer the time must be. Otherwise, inter-reader synchronization overheads dominate, and the system does not scale. The root cause is that synchronization protocol that is executed by each reader upon rw mutex lock and unlock is-a write access (regarding mutex' internal data) and can be executed by at most 1 thread at a time.

Moreover, mutual exclusion between a writer and readers can be a problem too. Either writers or readers can starve under load, note that the more hardware threads you have the higher load they produce. That is, it's not a function of only a program, it also depends on underlying hardware, and after upgrade to a "faster" machine, you may see performance degradation (it's really not that infrequent in real life).

The whole idea of advanced reader-writer synchronization primitives is to make logically read-only accesses physically read-only wrt shared data and/or eliminate mutual exclusion between readers and writers.

There are several techniques for that.

Move on to Multi-Version Concurrency Control

Multi-Version Concurrency Control

Multi-Version Concurrency Control (MVCC) is a basic technique for elimination of starvation. MVCC allows several versions of an object to exist at the same time. That is, there are the "current" version and one or more previous versions. Readers acquire the current version and work with it as much as they want. During that a writer can create and publish a new version of an object, which becomes the current. Readers still work the previous version and can't block/starve writers. When readers end with an old version of an object, it goes away.

There is strong similarity with persistent data structures. However, in a context of persistent data structures we care about all version of an object equally; while in a context of MVCC we have a separated "current" version, and few previous versions that we care only as far as.

The approach may appear quite strange and counter-intuitive to you, if you used to work in a non-concurrent environment. However, trust me, it is a very good and natural approach for concurrent systems. It captures the essence of how things are in concurrent systems.

Next page: Optimistic Concurrency Control

Optimistic Concurrency Control

Another technique is the Optimistic Concurrency Control (as opposed to traditional Pessimistic Concurrency Control). It makes logically read-only accesses physically read-only and eliminates writer starvation caused by readers. The idea is that a reader starts reading an object w/o any synchronization (optimistically hoping for success), and when it finishes it verifies that the object was not changed under its feet (verification can be conducted periodically during reading if required). If the object was not changed then it has obtained some consistent view of the object; otherwise he needs to retry reading.

The technique gives very good results wrt scalability in many cases. However there is a caveat: a reader must be prepared for reading inconsistent data, which potentially can cause crashes, infinite looping and other very bad things. This fact significantly limits applicability of the technique.

Next page: State Distribution

State Distribution

Another basic technique is state distribution, it helps to turn logically read-only accesses into physically read-only accesses wrt shared state. Well distributed state (partition for each thread/processor) can be considered as non-shared state for our needs. The underlying idea is that each reader thread/processor obtains a separate piece of state, and works mostly with it. While writers (hopefully episodically and infrequently) synchronize with each reader's state.

Now we are ready to get our hands dirty with some real stuff. What is currently available here is:

Improved Lockfree SeqLock

Waitfree Object Storage with Single-word Atomic Operations

Improved Lockfree SeqLock

Assume we have data structure which we want to protect with the SeqLock. Data structure is relatively big. Write frequency is low, but not as low as we want. So sometimes readers have to wait for writer, and sometimes readers have to retry, and retries are expensive as data structure is big.

I am going to trade some space for speed. X times more space we use, X times lower probability of retries. Quite fair deal. Blocking of readers is completely eliminated. Readers are lockfree.

Here is the algorithm sketch:

struct data_t

{

int seq; // sequence number

int data [1024]; // user data

};

struct seqlock_t

{

data_t* current;

data_t pool [16]; // 16 user objects are held

};

seqlock_t sl;

mutex_t mtx; // mutex to coordinate writers

void read()

{

for (;;)

{

data_t* d = sl.current; // load-consume

int seq1 = d->seq;

// load-load fence

if (seq1 % 2)

continue;

process(d); // user processing

// load-load fence

int seq2 = d->seq;

if (seq1 == seq2)

return;

}

}

write()

{

mtx.loсk();

data_t* d0 = sl.current; // load-consume

int idx = (sl.current - sl.pool + 1) % 16;

data_t* d = &sl.pool[idx];

d->seq += 1; // start writing new object

// store-store fence

modify(d0, d); // user processing

// store-store fence

d->seq += 1; // end writing new object

sl.current = d; // store-release

mtx.unloсk();

}

Note that object, which is now current, will be modified only after 15 previous objects will be reused. So this trick can greatly reduce probability of reader retries. The cost is increased memory consumption (note that still no dynamic memory allocation involved), and writers have to copy object in process of modification, instead of modification in-place (like in classical SeqLock). In some situations object is rewritten completely, so no copying will be involved. In classical SeqLock, because we have only one object, if object is loсked reader has to block (usually passive spin is used, i.e. yield). In this optimized SeqLock, because we have several objects, if objects is loсked then this means that reader just works with substantially outdated object, so it just have to reload pointer to current object, no blocking/spinning is required.

Wait-free Object Storage with Single-word Atomic Operations

By object storage I mean a component that can be used in the following scenario:

object_storage g_s;

// a plurality of "reader" threads periodically acquire and release a

// reference to "a current" version of some global object

while (...)

{

T* obj = g_s.acquire();

// do something with obj

g_s.release(obj);

}

// a "writer" thread periodically (but infrequently) updates the

object

while (...)

{

T* old_obj = g_s.write_lock();

T* new_obj = create_new_object(old_obj);

g_s.write_unlock(new_obj); // installs new version of the object

}

Such a component is useful to manage such objects like global

application settings (that still can be episodically updates by an

administrator, but constantly used everywhere), or routing table in a

network router (which is updated each X seconds/minutes, but read

during processing of each packet), etc.

And, yes, the component uses MVCC (multi-version concurrency control),

that is at each moment in time there can be several alive version of

an object (and it's generally a good idea in a concurrent system).

Of course you can implement it with a mutex + a reference counted

object in the following way:

std::mutex g_mtx;

std::mutex g_write_mtx;

std::shared_ptr<T> g_ptr;

std::shared_ptr<T> read_lock()

{

std::mutex::scoped_lock l (g_mtx);

return g_ptr; // shared_ptr copy

}

std::shared_ptr<T> write_lock()

{

g_write_mtx.lock();

std::mutex::scoped_lock l (g_mtx);

return g_ptr; // shared_ptr copy

}

void write_unlock(std::shared_ptr<T> const& ptr)

{

{

std::mutex::scoped_lock l (g_mtx);

g_ptr = ptr;

}

g_write_mtx.unlock();

}

Simple. But performance is not all that great. There is at least 1

atomic RMW on a heavy contented memory location for mutex lock/unlock

+ 1 atomic RMW on a heavy contended reference counter. Plus some

possibility of blocking on the mutex.

The wait-free storage algorithm issues only 1 atomic RMW per acquire/

release + contention is somewhat distributed since it uses so called

"differential reference counting" (DRC), that is all "+1" go to one

counter, while all "-1" go to another counter.

I posted a similar algorithm some time ago. But the problem is that general-purpose DRC requires double-word

atomic RMW operations, and they are not available on some

architectures as the saying goes.

DRC generally combines pointer to the current version of an object and

"outer" reference counter into a single memory "word" (that can be

manipulated atomically) (while "inner" reference counter resides in

the object). The idea is to limit number of alive versions of an

object (which is once again generally a good idea, for example, you

expect there to be only 1 alive version most of the time, and 2

versions some time after update, now, if number of alive versions

starts to grow unboundedly, something weird goes and you can just run

out of memory). Now, when we have at most, say, 4 versions of an

object, we can store an index (0..3) instead of a pointer, which frees

all other bits for the counter.

The rest is pie (to the extent possible for lockfree algorithms).

Here is an implementation for MSVC/Win32:

#define OBJECT_COUNT 4

#define OBJECT_MASK (OBJECT_COUNT-1)

#define COUNT_MASK (~OBJECT_MASK)

#define COUNT_INC OBJECT_COUNT

#define PERSISTENT 1

#define TEMPORAL 2

typedef struct lf_object_t

{

uintptr_t volatile rc; // "inner" counter

lf_object_t* volatile* back_ptr;

void (*dtor)(void* obj);

} lf_object_t;

struct lf_store_t

{

uintptr_t volatile state; // "outer" counter + index to

lf_store_t::objects

lf_object_t* volatile objects [OBJECT_COUNT];

CRITICAL_SECTION write_mtx;

};

void lf_store_create (lf_store_t*

store, lf_object_t* obj, void(*dtor)(void*))

{

size_t i;

store->state = 0;

InitializeCriticalSection(&store->write_mtx);

store->objects[0] = obj;

for (i = 1; i != OBJECT_COUNT; i += 1)

store->objects[i] = 0;

obj->rc = PERSISTENT;

obj->back_ptr = &store->objects[0];

obj->dtor = dtor;

}

static void lf_store_release_object (lf_object_t* obj)

{

assert(obj->rc == 0);

assert(obj->back_ptr[0] == obj);

obj->back_ptr[0] = 0;

obj->dtor(obj);

}

void lf_store_destroy (lf_store_t*

store)

{

uintptr_t idx;

lf_object_t* obj;

idx = store->state & OBJECT_MASK;

obj = store->objects[idx];

obj->rc -= (store->state & COUNT_MASK) / OBJECT_COUNT * TEMPORAL +

PERSISTENT;

lf_store_release_object(obj);

DeleteCriticalSection(&store->write_mtx);

}

lf_object_t* lf_store_read_acquire (lf_store_t*

store)

{

uintptr_t prev;

uintptr_t idx;

// completely wait-free

// increment outer counter and simultaneously read index of the

current object

prev = (uintptr_t)_InterlockedExchangeAdd((long volatile*)&store-

>state, COUNT_INC);

idx = prev & OBJECT_MASK;

return store->objects[idx];

}

void lf_store_read_release (lf_object_t* obj)

{

uintptr_t prev;

// increment inner counter

prev = (uintptr_t)_InterlockedExchangeAdd((long volatile*)&obj-

>rc, TEMPORAL) + TEMPORAL;

if (prev == 0)

lf_store_release_object(obj);

}

lf_object_t* lf_store_write_lock (lf_store_t*

store)

{

uintptr_t idx;

EnterCriticalSection(&store->write_mtx);

idx = store->state & OBJECT_MASK;

return store->objects[idx];

}

void lf_store_write_unlock (lf_store_t*

store, lf_object_t* obj, void(*dtor)(void*))

{

uintptr_t prev;

uintptr_t idx;

uintptr_t old_cnt;

uintptr_t old_idx;

uintptr_t cnt_dif;

uintptr_t cnt_res;

lf_object_t* old_obj;

// find free object slot

for (;;)

{

for (idx = 0; idx != OBJECT_COUNT; idx += 1)

{

if (store->objects[idx] == 0)

break;

}

if (idx != OBJECT_COUNT)

break;

SwitchToThread();

}

// prepare the object for publication

store->objects[idx] = obj;

obj->rc = PERSISTENT;

obj->back_ptr = &store->objects[idx];

obj->dtor = dtor;

// publish the object

// and simultaneously grab previous value of the outer counter

prev = (uintptr_t)_InterlockedExchange((long volatile*)&store-

>state, idx);

old_cnt = prev & COUNT_MASK;

old_idx = prev & OBJECT_MASK;

old_obj = store->objects[old_idx];

assert(old_idx != idx);

assert(old_obj->back_ptr == &store->objects[old_idx]);

// transfer value of the outer counter to the inner counter

// only now object's inner counter can drop to zero

cnt_dif = (uintptr_t)-(intptr_t)(old_cnt / OBJECT_COUNT * TEMPORAL

+ PERSISTENT);

cnt_res = (uintptr_t)_InterlockedExchangeAdd((long

volatile*)&old_obj->rc, cnt_dif) + cnt_dif;

LeaveCriticalSection(&store->write_mtx);

if (cnt_res == 0)

lf_store_release_object(old_obj);

}

Some additional comments. So when there are already OBJECT_COUNT alive

objects, and a writer wants to install a new version, he waits until

at least one old version will go away (some form of automatic overload

control). However, be careful - that introduces implicit dependency

between threads and can lead to unexpected deadlocks (writer waits for

readers to release an old version, while readers are blocked on some

resource acquired by the writer).

The algorithm can be easily modified to incorporate an object pool, so

that there are always OBJECT_COUNT objects that are are reused as

needed (no need to constantly allocate/deallocate objects).

lf_store_t::objects always holds pointers to objects, while separate

parallel array of atomic flags tracks in-use/free indication (or

perhaps lsb of lf_store_t::objects is used as in-use/free flag).

I did not test it with Relacy Race Detector:

http://groups.google.com/group/relacy

so potentially there are some minor bugs, but I believe the algorithm

is working as a whole.

Here is small single-threaded test-case + necessary includes:

#include <windows.h>

#include <intrin.h>

#include <assert.h>

static long volatile my_object_count;

struct my_object : lf_object_t

{

int data;

my_object(int data)

: data(data)

{

_InterlockedIncrement(&my_object_count);

}

~my_object()

{

_InterlockedDecrement(&my_object_count);

}

static void dtor(void* obj)

{

delete static_cast<my_object*>(obj);

}

};

int main()

{

lf_store_t store;

lf_store_create(&store, new my_object (1), &my_object::dtor);

{

my_object* obj = (my_object*)lf_store_read_acquire(&store);

assert(obj->data == 1);

lf_store_read_release(obj);

}

{

my_object* obj = (my_object*)lf_store_write_lock(&store);

assert(obj->data == 1);

lf_store_write_unlock(&store, new my_object (2),

&my_object::dtor);

}

{

my_object* obj = (my_object*)lf_store_read_acquire(&store);

assert(obj->data == 2);

my_object* obj2 = (my_object*)lf_store_write_lock(&store);

assert(obj2->data == 2);

lf_store_write_unlock(&store, new my_object (3),

&my_object::dtor);

lf_store_read_release(obj);

}

{

my_object* obj = (my_object*)lf_store_write_lock(&store);

assert(obj->data == 3);

lf_store_write_unlock(&store, new my_object (4),

&my_object::dtor);

}

lf_store_destroy(&store);

assert(my_object_count == 0);

}

Distributed Reader-Writer Mutex

Now, when we know that traditional reader-writer mutexes do no scale and write sharing is our foe, and that the way to go is state distribution, let's try to create a scalable distributed reader-writer mutex. The mutex is going to be very simple, I'm not going to dive too deep into advanced lockfree algorithms, let's just create the simplest possible distributed design, and see what performance and scalability we will achieve.

The mutex is based on per-processor data, and it leads to a very simple implementation. If it would be based on per-thread data instead, we would need to cope with dynamic thread registration/deregistration and properly synchronize arriving/terminating readers with writers.

The idea is very simple. We merely create a traditional reader-writer mutex per CPU; a reader acquires in shared mode a mutex it thinks refers to presumably current CPU; while a writer acquires in exclusive mode all the mutexes:

Note that it's OK if a reader acquires a "wrong" mutex - they all are plain reader-writer mutexes in itself, so they support several concurrent readers. No additional synchronization between writers is required, writers acquire the mutexes in the same order (from 0 to P-1), so ownership over mutex 0 basically determines who is the "current" writer (all other potential writers are parked on mutex 0).

As an underlying reader-writer mutex type I use plain pthread_rwlock_t; sched_getcpu() is used to obtain current processor number. Let's move on to implementation. First, let's define data structures:

typedef struct distr_rw_mutex_cell_t

{

pthread_rwlock_t mtx;

char pad [CACHE_LINE_SIZE - sizeof(pthread_rwlock_t)];

} distr_rw_mutex_cell_t;

typedef struct distr_rw_mutex_t

{

int proc_count;

char pad [CACHE_LINE_SIZE - sizeof(int)];

distr_rw_mutex_cell_t cell [0];

} distr_rw_mutex_t;

Constructor merely determines total number of processors in a system, memorizes it, and initializes per-processor mutexes. While destructor destroys the mutexes and frees memory:

int distr_rw_mutex_create (distr_rw_mutex_t** mtx_p)

{

distr_rw_mutex_t* mtx;

int proc_count;

int i;

proc_count = (int)sysconf(_SC_NPROCESSORS_CONF);

if (posix_memalign((void**)&mtx, CACHE_LINE_SIZE,

sizeof(distr_rw_mutex_t) +

proc_count * sizeof(distr_rw_mutex_cell_t)))

return 1;

mtx->proc_count = proc_count;

for (i = 0; i != proc_count; i += 1)

{

if (pthread_rwlock_init(&mtx->cell[i].mtx, 0))

{

while (i --> 0)

pthread_rwlock_destroy(&mtx->cell[i].mtx);

free(mtx);

return 1;

}

}

*mtx_p = mtx;

return 0;

}

int distr_rw_mutex_destroy (distr_rw_mutex_t* mtx)

{

int i;

for (i = 0; i != mtx->proc_count; i += 1)

pthread_rwlock_destroy(&mtx->cell[i].mtx);

free(mtx);

return 0;

}

Write lock/unlock functions merely lock/unlock all the mutexes. Not much to comment here:

int distr_rw_mutex_wrlock (distr_rw_mutex_t* mtx)

{

int i;

for (i = 0; i != mtx->proc_count; i += 1)

pthread_rwlock_wrlock(&mtx->cell[i].mtx);

return 0;

}

int distr_rw_mutex_wrunlock (distr_rw_mutex_t* mtx)

{

int i;

for (i = 0; i != mtx->proc_count; i += 1)

pthread_rwlock_unlock(&mtx->cell[i].mtx);

return 0;

}

Read lock function obtains [approximation] of current processor, memorizes it, and locks in shared mode respective mutex. Read unlock function just unlocks the same mutex. Note that unlock function can't re-obtain current processor number and use, it must use processor number obtained in the lock function (because processor might be changed):

int distr_rw_mutex_rdlock (distr_rw_mutex_t* mtx, int* proc)

{

*proc = sched_getcpu();

pthread_rwlock_rdlock(&mtx->cell[*proc].mtx);

return 0;

}

int distr_rw_mutex_rdunlock (distr_rw_mutex_t* mtx, int proc)

{

pthread_rwlock_unlock(&mtx->cell[proc].mtx);

return 0;

}

Performance

In order to verify performance and scalability, I benchmarked the mutex against pthread_rwlock_t. The benchmark is very simple: 1 reader-writer mutex, an array of N int's (the data) and P worker threads. Each worker thread constantly acquires the mutex in shared mode and verifies data's consistency. Periodically each worker thread acquires the mutex in exclusive mode and mutates the data. The benchmark was executed on a 4 processor x 4 cores AMD machine (16 hardware threads in total) running Linux 2.6.29.

In the first run I set N=4, and vary period of writing as 10, 50, 100, 500, 1000 and 10000

And below is the same graph but without lines for distributed(500, 1000 and 10000):

In the second run I set N=256, the same two graphs below:

So, what we see on the graphs? Our distributed mutex is somewhat (10-60%) slower in uncontended case (note that 60% slowdown refers to the extreme case of 10% write rate + basically no useful work). pthread_rwlock_t is completely non-scalable under load even on read-mostly workloads (however, we see a slight attempt to scale with N=256 on 2 threads). Our distributed mutex scales much better, under 1/10000 write rate it exposes perfect linear scaling.

Note that that fact that we are using current processor number for read acquisition is crucial, because performance-wise per-processor data is basically equal to per-thread data (a processor runs one thread at a time). I've also benchmarked a randomized variant of the distributed mutex (it uses per-thread random number generators to choose a mutex for read acquisition), and I've tried to create kind of the best conditions for it - I set data size N to 256 and increase number of underlying reader-writer mutexes 4-fold. The benchmark showed that it scales better than a centralized mutex, however still far from per-processor mutex (write rate is presented in brackets):

The bottom line is that the implementation is very simple and comprehensible, performance is somewhat worse than pthread_rwlock_t, while scalability is significantly improved. The mutex can be used whenever you have high read load and low write-to-read ratio (~<1-5%).

You can download the implementation along with the benchmark below (gcc/Linux).

Producer-Consumer Queues

Producer-consumer queues are one of the most fundamental components in concurrent systems, they represent means to transfer data/messages/tasks/transactions between threads/stages/agents. If you hope that there is a single magical "one-size-fits-all" concurrent queue (MS PPL and Intel TTB fallacy), sorry, there is no. So what flavours of queues are there?

Depending on allowed number of producer and consumer threads:

- Multi-producer/multi-consumer queues (MPMC)

- Single-producer/multi-consumer queues (SPMC)

- Multi-producer/single-consumer queues (MPSC)

- Single-producer/single-consumer queues (SPSC)

I hope this aspect is clear - for example, if you have only 1 producer and 1 consumer thread, you can use SPSC queue instead of more general MPMC queue, and as you may guess it will be significantly faster.

Depending on underlying data structure:

- Array-based

- Linked-list-based

- Hybrid

Array-based queues are generally faster, however they are usually not strictly lockfree. The drawback is that they need to preallocate memory for the worst case. Linked-list queues grow dynamically, thus no need to preallocate any memory up-front. And hybrid queues (linked-list of small fixed-size arrays) try to combine advantages of both.

For linked-list based queues depending on intrusiveness:

- Intrusive

- Non-intrusive

Intrusive queues are generally better performance-wise if you need to transfer already dynamically allocated data, because there is not need for additional node memory management. However they are inapplicable if your data is not dynamically allocated and/or you need to put the same message to unknown number of queues simultaneously.

For linked-list based queues depending on maximum size:

- Bounded

- Unbounded

An unbounded queue can hold infinite number of messages, while bounded - up to some predefined limit. If the limit is reached further enqueue operations fail. Note that array-based queue are always bounded. On first sight unbounded queues are more attractive (because they allow you to not care). But they are not. They are dangerous. What will happen if your queue will grow up to 10^6 messages? 10^7? 10^8? 10^9? What? It should not happen? So why you put an unbounded queue in the first place? In 95% of cases you need a bounded queue, because it will enforce what you think should happen, and will save you from bad things.

For bounded queues depending on overflow behavior:

- Fails on overflow

- Overwrites the oldest item on overflow

Most queues fall into the former category, and the latter is quite specific. Consider that a producer submits some real-time data, and if a consumer can't catch up it's better to lose the oldest data rather than the newest.

Depending on requirements for Garbage Collection (object life-time management):

- Requires GC

- Does not requires GC

There are a lot of lockfree algorithms (not only queues) that require GC - they don't know when it's safe to free memory. For garbage collected environments like Java/.NET it's not a problem. However for non-garbage collected environments like C/C++ it may be a serious problem (if you don't have an object life-time management scheme yet, of course).

Depending on support for priorities:

- with support for message priorities

- without support for message priorities

Priority queues reorder messages, so that consumers always dequeue an element with the maximum priority. Priority queues are generally significantly slower and scale worse.

Depending on ordering guarantees:

- provides causal FIFO/LIFO (strongest)

- provides per-producer FIFO/LIFO

- provides best-effort FIFO/LIFO (weakest)

- no ordering guarantees

The differences are actually quite subtle (not counting the last category), and they have to do with corner use-cases - namely in what use cases you expect particular ordering of messages. Best-effort FIFO can be significantly faster and scale better than causal FIFO.

Depending on forward progress guarantees for producers:

- Waitfree producers

- Lockfree producers

- Blocking producers

Depending on forward progress guarantees for consumers:

- Waitfree consumers

- Lockfree consumers

- Blocking consumers

If you are implementing a hard-real time system, then you need no less than wait-free producers and consumers. If a producer works in a context of signal or interrupt handler then it must be at least lockfree. However in most cases you are Ok with whatever guarantee. Generally, blocking is faster than lockfree, and lockfree is faster than waitfree.

Depending on expected usage:

- A queue usually contains very few or zero messages

- A queue usually contains substantial amount of messages

This aspect can also affect queue's design. One queue can be faster in former scenario, while another in the latter.

There is also an aspect related to behavior on failure:

- When a queue is empty/full consumers/producers get blocked

- When a queue is empty/full consumers/producers instantly get 'false'

While a lot of queues incorporate blocking, I believe that it's not a queue's concern. It should be solved externally with eventcounts. What if you want to block on one instance, and get 'false' from another? What if you want to block in one context, and get 'false' in another? What if you want to block on several queues?

So how much combinations can you count? I count more than 10'000 combinations! Huh!

Of course, not all combinations have optimal implementations (that is, they would be implemented the same way as some stronger combination), and, I think, some combinations just make no sense. But I hope you get some realization of the design space :)

Move on to the Queue Catalog

Queue Catalog

So what algorithms are available here as of now:

Bounded MPMC queue

Intrusive MPSC node-based queue

Non-intrusive MPSC node-based queue

Unbounded SPSC Queue

Case Study: FastFlow Queue

And also some general thoughts on priority queues:

Priority Queues

Bounded MPMC queue

According to the classification it's MPMC, array-based, fails on overflow, does not require GC, w/o priorities, causal FIFO, blocking producers and consumers queue. The algorithm is pretty simple and fast. It's not lockfree in the official meaning, just implemented by means of atomic RMW operations w/o mutexes.

The cost of enqueue/dequeue is 1 CAS per operation. No amortization, just 1 CAS. No dynamic memory allocation/management during operation. Producers and consumers are separated from each other (as in the two-lock queue), i.e. do not touch the same data while queue is not empty.

On my dual-core laptop enqueue/dequeue takes 75 cycles on average in a synthetic multi-threaded benchmark.

Source code test suite are attached below (the file contains limited implementation of std::atomic, ready to run on Windows, MSVC, x86-32) .

template<typename T>

class mpmc_bounded_queue

{

public:

mpmc_bounded_queue(size_t buffer_size)

: buffer_(new cell_t [buffer_size])

, buffer_mask_(buffer_size - 1)

{

assert((buffer_size >= 2) &&

((buffer_size & (buffer_size - 1)) == 0));

for (size_t i = 0; i != buffer_size; i += 1)

buffer_[i].sequence_.store(i, std::memory_order_relaxed);

enqueue_pos_.store(0, std::memory_order_relaxed);

dequeue_pos_.store(0, std::memory_order_relaxed);

}

~mpmc_bounded_queue()

{

delete [] buffer_;

}

bool enqueue(T const& data)

{

cell_t* cell;

size_t pos = enqueue_pos_.load(std::memory_order_relaxed);

for (;;)

{

cell = &buffer_[pos & buffer_mask_];

size_t seq =

cell->sequence_.load(std::memory_order_acquire);

intptr_t dif = (intptr_t)seq - (intptr_t)pos;

if (dif == 0)

{

if (enqueue_pos_.compare_exchange_weak

(pos, pos + 1, std::memory_order_relaxed))

break;

}

else if (dif < 0)

return false;

else

pos = enqueue_pos_.load(std::memory_order_relaxed);

}

cell->data_ = data;

cell->sequence_.store(pos + 1, std::memory_order_release);

return true;

}

bool dequeue(T& data)

{

cell_t* cell;

size_t pos = dequeue_pos_.load(std::memory_order_relaxed);

for (;;)

{

cell = &buffer_[pos & buffer_mask_];

size_t seq =

cell->sequence_.load(std::memory_order_acquire);

intptr_t dif = (intptr_t)seq - (intptr_t)(pos + 1);

if (dif == 0)

{

if (dequeue_pos_.compare_exchange_weak

(pos, pos + 1, std::memory_order_relaxed))

break;

}

else if (dif < 0)

return false;

else

pos = dequeue_pos_.load(std::memory_order_relaxed);

}

data = cell->data_;

cell->sequence_.store

(pos + buffer_mask_ + 1, std::memory_order_release);

return true;

}

private:

struct cell_t

{

std::atomic<size_t> sequence_;

T data_;

};

static size_t const cacheline_size = 64;

typedef char cacheline_pad_t [cacheline_size];

cacheline_pad_t pad0_;

cell_t* const buffer_;

size_t const buffer_mask_;

cacheline_pad_t pad1_;

std::atomic<size_t> enqueue_pos_;

cacheline_pad_t pad2_;

std::atomic<size_t> dequeue_pos_;

cacheline_pad_t pad3_;

mpmc_bounded_queue(mpmc_bounded_queue const&);

void operator = (mpmc_bounded_queue const&);

};

Intrusive MPSC node-based queue

Advantages:

+ Intrusive. No need for additional internal nodes.

+ Wait-free and fast producers. One XCHG is maximum what one can get with multi-producer non-distributed queue.

+ Extremely fast consumer. On fast-path it's atomic-free, XCHG executed per node batch, in order to grab 'last item'.

+ No need for node order reversion. So pop operation is always O(1).

+ ABA-free.

+ No need for PDR. That is, one can use this algorithm out-of-the-box. No need for thread registration/deregistration, periodic activity, deferred garbage etc.

Disadvantages:

- Push function is blocking wrt consumer. I.e. if producer blocked in (*), then consumer is blocked too. Fortunately 'window of inconsistency' is extremely small - producer must be blocked exactly in (*). Actually it's disadvantage only as compared with totally lockfree algorithm. It's still much better lockbased algorithm.

struct mpscq_node_t

{

mpscq_node_t* volatile next;

};

struct mpscq_t

{

mpscq_node_t* volatile head;

mpscq_node_t* tail;

mpscq_node_t stub;

};

#define MPSCQ_STATIC_INIT(self) {&self.stub, &self.stub, {0}}

void mpscq_create(mpscq_t* self)

{

self->head = &self->stub;

self->tail = &self->stub;

self->stub.next = 0;

}

void mpscq_push(mpscq_t* self, mpscq_node_t* n)

{

n->next = 0;

mpscq_node_t* prev = XCHG(&self->head, n);

//(*)

prev->next = n;

}

mpscq_node_t* mpscq_pop(mpscq_t* self)

{

mpscq_node_t* tail = self->tail;

mpscq_node_t* next = tail->next;

if (tail == &self->stub)

{

if (0 == next)

return 0;

self->tail = next;

tail = next;

next = next->next;

}

if (next)

{

self->tail = next;

return tail;

}

mpscq_node_t* head = self->head;

if (tail != head)

return 0;

mpscq_push(self, &self->stub);

next = tail->next;

if (next)

{

self->tail = next;

return tail;

}

return 0;

}

Non-intrusive MPSC node-based queue

Advantages:

+ Waitfree and fast producers. One XCHG is maximum what one can get with multi-producer non-distributed queue.

+ Extremely fast consumer. On fast-path it's atomic-free, XCHG executed per node batch, in order to grab 'last item'.

+ No need for node order reversion. So pop operation is always O(1).

+ ABA-free.

+ No need for PDR. That is, one can use this algorithm out-of-the-box. No need for thread registration/deregistration, periodic activity, deferred garbage etc.

Disadvantages:

- Push function is blocking wrt consumer. I.e. if producer blocked in (*), then consumer is blocked too. Fortunately 'window of inconsistency' is extremely small - producer must be blocked exactly in (*). Actually it's disadvantage only as compared with totally lockfree algorithm. It's still much better lock-based algorithm.

- The algorithm is not linearizable.

struct mpscq_node_t

{

mpscq_node_t* volatile next;

void* state;

};

struct mpscq_t

{

mpscq_node_t* volatile head;

mpscq_node_t* tail;

};

void mpscq_create(mpscq_t* self, mpscq_node_t* stub)

{

stub->next = 0;

self->head = stub;

self->tail = stub;

}

void mpscq_push(mpscq_t* self, mpscq_node_t* n)

{

n->next = 0;

mpscq_node_t* prev = XCHG(&self->head, n); // serialization-point wrt producers, acquire-release

prev->next = n; // serialization-point wrt consumer, release

}

mpscq_node_t* mpscq_pop(mpscq_t* self)

{

mpscq_node_t* tail = self->tail;

mpscq_node_t* next = tail->next; // serialization-point wrt producers, acquire

if (next)

{

self->tail = next;

tail->state = next->state;

return tail;

}

return 0;

}

Unbounded SPSC Queue

Unbounded single-producer/single-consumer node-based queue. Internal non-reducible cache of nodes is used. Dequeue operation is always wait-free. Enqueue operation is wait-free in common case (when there is available node in the cache), otherwise enqueue operation calls ::operator new(), so probably not wait-free. No atomic RMW operations nor heavy memory fences are used, i.e. enqueue and dequeue operations issue just several plain loads, several plain stores and one conditional branching. Cache-conscious data layout is used, so producer and consumer can work simultaneously causing no cache-coherence traffic.

Single-producer/single-consumer queue can be used for communication with thread which services hardware device (wait-free property is required), or when there are naturally only one producer and one consumer. Also N single-producer/single-consumer queues can be used to construct multi-producer/single-consumer queue, or N^2 queues can be used to construct fully-connected system of N threads (other partially-connected topologies are also possible).

Hardware platform: x86-32/64

Compiler: Intel C++ Compiler

// load with 'consume' (data-dependent) memory ordering

template<typename T>

T load_consume(T const* addr)

{

// hardware fence is implicit on x86

T v = *const_cast<T const volatile*>(addr);

__memory_barrier(); // compiler fence

return v;

}

// store with 'release' memory ordering

template<typename T>

void store_release(T* addr, T v)

{

// hardware fence is implicit on x86

__memory_barrier(); // compiler fence

const_cast<T volatile>(addr) = v;

}

// cache line size on modern x86 processors (in bytes)

size_t const cache_line_size = 64;

// single-producer/single-consumer queue

template<typename T>

class spsc_queue

{

public:

spsc_queue()

{

node* n = new node;

n->next_ = 0;

tail_ = head_ = first_= tail_copy_ = n;

}

~spsc_queue()

{

node* n = first_;

do

{

node* next = n->next_;

delete n;

n = next;

}

while (n);

}

void enqueue(T v)

{

node* n = alloc_node();

n->next_ = 0;

n->value_ = v;

store_release(&head_->next_, n);

head_ = n;

}

// returns 'false' if queue is empty

bool dequeue(T& v)

{

if (load_consume(&tail_->next_))

{

v = tail_->next_->value_;

store_release(&tail_, tail_->next_);

return true;

}

else

{

return false;

}

}

private:

// internal node structure

struct node

{

node* next_;

T value_;

};

// consumer part

// accessed mainly by consumer, infrequently be producer

node* tail_; // tail of the queue

// delimiter between consumer part and producer part,

// so that they situated on different cache lines

char cache_line_pad_ [cache_line_size];

// producer part

// accessed only by producer

node* head_; // head of the queue

node* first_; // last unused node (tail of node cache)

node* tail_copy_; // helper (points somewhere between first_ and

tail_)

node* alloc_node()

{

// first tries to allocate node from internal node cache,

// if attempt fails, allocates node via ::operator new()

if (first_ != tail_copy_)

{

node* n = first_;

first_ = first_->next_;

return n;

}

tail_copy_ = load_consume(&tail_);

if (first_ != tail_copy_)

{

node* n = first_;

first_ = first_->next_;

return n;

}

node* n = new node;

return n;

}

spsc_queue(spsc_queue const&);

spsc_queue& operator = (spsc_queue const&);

};

// usage example

int main()

{

spsc_queue<int> q;

q.enqueue(1);

q.enqueue(2);

int v;

bool b = q.dequeue(v);

b = q.dequeue(v);

q.enqueue(3);

q.enqueue(4);

b = q.dequeue(v);

b = q.dequeue(v);

b = q.dequeue(v);

}

Case Study: FastFlow Queue

FastFlow is a parallel programming framework for multicore platforms, which uses hybrid single-producer/single-consumer queues as a base underlying component for inter-thread communication. So let's study how the queues are designed and implemented, and if we can improve on them.

There are 5 main components:

1. Basic spsc array-based queue (ff::SWSR_Ptr_Buffer). It's used as a building block for the queue itself, and for various caching as well (source code).

2. Dynamic linked-list-based queue (ff::dynqueue). It's used to link several ff::SWSR_Ptr_Buffer together into a linked list, it allows us to build an unbounded queue from bounded ff::SWSR_Ptr_Buffer queues (source code).

3. Node cache for ff::dynqueue. It's an ff::SWSR_Ptr_Buffer used for caching of nodes.

4. ff::SWSR_Ptr_Buffer cache. It's also an ff::SWSR_Ptr_Buffer used for caching of, well, the same queues.

5. Component that binds it all together (ff::uSWSR_Ptr_Buffer). It manages caches, tracks a current buffer for a producer and for a consumer and so on (source code).

Let's try to visualize the structure:

Fig 1.

Yeah, it's a bit messy (provided that (3) and (4) are not even expanded - they are based on ff::SWSR_Ptr_Buffer, so look as (1)). What we see here is a lot of helper components, a lot of padding and a lot of indirection. Generally, it's not all that bad and overall design is quite fast and scalable, all cache line paddings are in place, and no atomic RMW nor expensive memory fences are on fast-paths. But does it need to be that complex? What I am going to do is to transform it to something that looks just as:

Fig 2.

So let's see what we can improve in the original design.

1. First, there is a completely unnecessary indirection uSWSR_Ptr_Buffer->SWSR_Ptr_Buffer->buffer->msg, and we can transform it to uSWSR_Ptr_Buffer->buffer->msg. An indirection can stall a thread, and it forces a thread to load an additional cache line. What's good in it? Nothing. In fig 2 you may see that the queue contains pointers directly into buffers.

2. There is completely no need in ff::dynqueue. We can embed 'next' links directly into buffers, and use them for linking. This way we eliminate ff::dynqueue and associated node cache. In fig 2 you may see that buffers are linked to each other internally.

3. We don't actually need SWSR_Ptr_Buffer cache as well. The main queue already links buffers together in the same way it would be done by a cache (FIFO). So in fig 2 you may see that a producer just holds a pointer 'last' to the last buffer which can be potentially reused, that is all what is required for caching of buffers. That is, a producer just checks as to whether the last buffer is already not used by a consumer or not, if so, a producer can reuse the last buffer for new messages.

4. There are some redundant conditional branching on fast-paths. I count 2 checks of enqueueing message for NULL (strictly saying, passing NULL into push() is a user's programming error, so it would be nice to be able to eliminate the check completely), 2 checks of buffer for fullness (only 1 is required), a check for prior queue initialization (if a user did not call init(), it's also a programming error on his side), and a check for overflow during index increment (which is plain unnecessary). And the same for the dequeue operation. That is, 6 conditional branches on fast-path for each operation, while only 1 is strictly necessary (whether the current buffer is not full/not empty or we must fall to slow-path).

5. A consumers checks for a presence of a next message as 'buffer[read_pos] != NULL', so buffers must be somehow initialized to NULLs. FastFlow approach is to memset buffers to NULL after allocation (which creates unpleasant burst of memory accesses and brings unnecessary data to cache), and then a consumer resets cells back to NULL after consumption (which may or may not be a bad thing depending on how a buffer will be used later). There is a better approach to initialization which does not produce memory access bursts and does not force consumers to acquire buffer's cache lines in a writable state. Basically, a producer initializes the next cell straight before setting up the current:

buffer[write_pos+1] = 0;

buffer[write_pos] = msg; // store-release

That's it. This makes memory accesses strictly local, and does not force any unnecessary cache line state changes (a producer will write to the next cell soon anyway).

6. Last but not least (actually the most important point), if one needs to stream the data, do stream the data (rather than pointers to the data). It (1) eliminates 1 layer of indirection (buffer->msg), (2) improves locality (the data is laid out continuously as opposed to scattered throughout the memory, (3) introduces kind of natural padding (that is, if a producer and a consumer work close to each other, in case of pointer based queue they will contend over a single cache line, but in case of data queue they will be further from each other), (4) eliminates dynamic memory allocation/deallocation overheads.

Now, let's sketch out data structure definition. We need to define buffer layout, as well as consumer's and producer's data:

class ff_queue

{

struct buffer_t

{

// pointer to the next buffer in the queue

buffer_t* next;

// size of the data

size_t size;

// the data

char data [0];

};

// consumer part:

// current position for reading

// (points somewhere into buffer_t::data)

char* volatile head_pos_;

// padding between consumer's and producer's parts

char pad_ [CACHE_LINE_SIZE];

// producer part:

// current position for writing

// (points somewhere into buffer_t::data)

char* tail_pos_;

// end of current buffer

char* tail_end_;

// helper variable

char* tail_next_;

// current 'tail' buffer

buffer_t* tail_buffer_;

// buffer cache

buffer_t* last_buffer_;

// default buffer size

size_t const buffer_size_;

// desired number of cached buffers

size_t const max_buffer_count_;

// current number of cached buffers

size_t buffer_count_;

// used as 'empty' marker

static size_t const eof = 1;

...

Now, let's sketch out the public interface:

class ff_queue

{

public:

void* enqueue_prepare (size_t size);

void enqueue_commit ();

void* dequeue_prepare ();

void dequeue_commit ();

// ...

Yes, since we want to pass the data (and not pointers to the data), we basically need to combine the queue and a memory manager. So now producer allocates memory directly from a queue:

void* msg = queue->enqueue_prepare(message_size);

// fill 'msg' with data

queue->enqueue_commit();

And consumer's code respectively looks like:

void* msg = queue->dequeue_prepare();

if (msg)

{

// consume msg

queue->dequeue_commit();

}

Now, let's implement the interface. enqueue_prepare() merely ensures that there is enough space in the current buffer for the message, and return current position in the buffer. enqueue_commit() merely writes EOF into the next cell, and then writes pointer to the next cell into the current cell:

void* enqueue_prepare (size_t size)

{

// round-up message size for proper alignment

size_t msg_size = ((uintptr_t)(size + sizeof(void*) - 1)

& ~(sizeof(void*) - 1)) + sizeof(void*);

// check as to whether there is enough space

// in the current buffer or not

if ((size_t)(tail_end_ - tail_pos_) >= msg_size + sizeof(void*))

{

// if yes, remember where next message starts

tail_next_ = tail_pos_ + msg_size;

// and return a pointer into the buffer

// for a user to fill with his data

return tail_pos_ + sizeof(void*);

}

else

{

// otherwise, fall to slow-path

return enqueue_prepare_slow(size);

}

}

void enqueue_commit ()

{

// prepare next cell

char* tail_next = tail_next_;

(char volatile*)tail_next = (char*)eof;

// update current cell

// (after this point the message becomes consumable)

atomic_addr_store_release((void* volatile*)tail_pos_, tail_next);

tail_pos_ = tail_next;

}

dequeue_prepare() loads and analyses value in the current cell. If there is no EOF flag, then there is a consumable message, otherwise there is either transfer to a next buffer or queue is empty:

void* dequeue_prepare ()

{

// load value in the current cell

void* next = atomic_addr_load_acquire((void* volatile*)head_pos_);

// if EOF flag is not set,

// then there is a consumable message

if (((uintptr_t)next & eof) == 0)

{

char* msg = head_pos_ + sizeof(void*);

return msg;

}

// otherwise there is just nothing or ...

else if (((uintptr_t)next & ~eof) == 0)

{

return 0;

}

// ... a tranfer to a next buffer

else

{

// in this case we just follow the pointer and retry

atomic_addr_store_release((void* volatile*)&head_pos_,

(char*)((uintptr_t)next & ~eof));

return dequeue_prepare();

}

}

void dequeue_commit ()

{

// follow the pointer to the next cell

char* next = *(char* volatile*)head_pos_;

assert(next != 0);

atomic_addr_store_release((void* volatile*)&head_pos_, next);

}

The only unimplemented function enqueue_prepare_slow() either obtains a buffer from cache (last_buffer_) or allocates a brand new buffer, then setups a transfer from a current buffer to the new one (a pointer combined with EOF flag), and then recursively calls enqueue_prepare() (which must succeed this time). I won't provide the code here, it's a slow-path anyway, refer to the full source code below.

I know, I know, after reading all that boring stuff you ask - and how much faster is it?

In order to test performance I created the following synthetic benchmark. There is a main thread and N worker threads, they all linked into a ring by means of the queues:

Main thread emits 50M messages, the last message is a special END token. Worker threads accept messages, do basic integrity verification, and pass them further along the ring. When a worker thread receives the END token, it terminates. The main thread does the same, with the exception that it does not pass messages further, that is, each message traverses the ring only once. Message sizes vary from 5 bytes to 20 bytes (4-byte length + payload).

I've tested it on an multiprocessor/multicore AMD machine (4 processors x 4 cores = 16 hardware threads total), and here are the results:

As you can see, my queue is not only faster, it also scales better - slope of the line is steeper. However, the only source of better scalability it data embedding into a queue (as opposed to passing pointers, that's point 6 in the list above). I've created another queue which is customized for pointer passing (ff_queue2 in the archive), it uses all the optimizations except data embedding, and on the same benchmark it shows only constant 5-20% speedup:

So, data embedding turns out to be a valuable method. But, of course, it's not always applicable. For example, if I have a read-only processing stage (like CRC validation), I want to merely hand off a pointer further, rather than copy data from one queue to another. Another example is parallel computations on large arrays/matrices, one doesn't really want to copy them around. However even such applications frequently create thin messages/tasks which contain something like few pointers to arrays/matrices and some indexes into them, and such messages are a perfect target for embedding.

Source code is attached below. The archive contains the queue (ff_queue), queue customized for pointer passing (ff_queue2), the benchmark code (quite messy) and required pieces of FastFlow. It can be compiled under Windows/MSVC and Linux/gcc.

Priority Queues

I'm going to share my thoughts on concurrent priority queues (CPQ) in general and tbb::concurrent_priority_queue (Intel Threading Building Blocks) in particular.

For information on tbb::concurrent_priority_queue check out the blog post. First of all, it's not all that "concurrent" at all. It uses mutual exclusion, it uses blocking, and in the end at most 1 thread does useful work at any given moment in time. There are nice pictures in the blog that show that it does not scale.

I think there are some ways to improve the implementation (and most likely TBB developers do not consider the first implementation as a final destination point). For example, producers do not actually need to wait (block) for the operation to complete, the only source of failure is a memory allocation error, so a producer can ensure there is enough space reserved in the queue, and immediately return once he offloaded the operation.

Another possible improvement is to increase batching. Namely, if a "handler" thread notices more work when he is about to retire, he can process more work up to to some predefined limit, I think it will improve locality somehow.

Hey, here I assume that you have skimmed through the implementation. Don't get upset if you don't, I believe it's not a way to go anyway.

Another potential route to go is concurrent ordered skip-lists. Skip-lists are randomized, so no need for global repair/rebalance operations that are required for heaps/trees. Enqueues are naturally distributed (=scalable) over the whole skip-list; however dequeue operations are all happen at list head (=!scalable) (can be made lockfree, though, but that's not a panacea). A possible improvement for skip-list based CPQ would be to embed a concurrent queue into each list node; the queue will contain elements with equal priority. So, for example, if a head node contains a queue with, say, 10 element, 9 subsequent CPQ dequeue operations will just pop an element from the queue (no need to do anything with skip-list itself). I would consider such design as the best choice (from available choices, not quite good anyway) for general CPQ for now.

General priority queues inherently non-scalable because of claimed properties - all producers and consumers must achieve strong global consensus on what is the highest priority element. Fear such things like death in a concurrent environment. Rare CPQ achieves at least 2x speedup under load.

So, if one *really* needs a CPQ, I would suggest 3 approaches: either give up on total consistency (strong priorities), or use specialized CPQ design, or both.

By giving up on total consistency I mean a distributed design (on a par with the distributed work-stealing Cilk-like scheduler). That is, each thread has it's own CPQ, a thread enqueues and dequeues elements from the own queue, and if it is empty he tries to steal a high priority element (or a batch of elements) from another thread. Such design is naturally distributed (=scalable). However, of course, threads will work on not the globally highest priority elements. As to whether it is a problem for a particuar system or not depends.

By specialized CPQ design I mean the following. A lot of systems are Ok with only, say, 5 or even 3 priorities - low, normal, high. So, you can just setup 3 concurrent queues - one for each priority level, and threads will poll the queues starting from high prio queue to low prio queue (checking few empty high prio queues is not a big deal performance-wise). Such design allows a lot of flexibility. For example, if you have single-producer/single-consumer (SPSC) scenario you can setup SPSC queues (which are a way faster and more scalable that general MPMC queues) (similarly for multi-producer/single-consumer and single-producer/multi-consumer scenarios). Or you can use array-based queues, or linked-list based queues, or whatever queues are the most suitable for you in a particular situation.

Or, you are able to prevent starvation of low prio elements, that is, if there is a constant flow of high and normal prio elements, you still may want to process some low prio elements in between (it's a good idea for most systems, your OS definitely does this for threads). Separate queues allow you to do this, while monolithic CPQ does not.

Moreover, if you have priorities (-inf..+inf) but expect to handle elements with priorities -1, 0, +1 most of the time, you can setup 3 concurrent queues for -1, 0, +1 and 2 CPQs for (-inf..-1) and (+1..+inf) (which are expected to be mostly idle).

As I've said, you can combine both approaches - a distributed setup of quantized queues.

I believe it's the way to go. By the way, most modern OS employ exactly such a design for thread scheduling not without a reason. Don't expect spicing up your system with a magical general "concurrent" priority queue to fix all your problems.

Eventcounts

An eventcount is a condition variable for lockfree algorithms. That is, it permits a thread to efficiently wait for an arbitrary condition to occur, but unlike condition variables, an eventcount does not require a mutex to protect the state (it's kind of stupid to surround a lockfree data structure with a mutex to permit conditional waiting).

An eventcount can be implemented as a fine-grained, fairly efficient and reusable component. Fine-grained in a sense that it supports notification of a set of interested threads rather than single/all threads (PTHREAD FUNCTIONS). Fairly efficient in a sense that producer (notifying thread) overhead is a single load and a single conditional branching on fast-path, and no consumer (blocking thread) overhead on fast-path. Reusable in a sense that it supports waiting on an arbitrary user-supplied predicate.

Eventcounts allow to separate a lockfree data structure and blocking/signaling logic, so that there is generally no need to reimplement and inject it into each and every lockfree algorithm. For example, some people tend to implement so called blocking producer-consumer queues (instead of returning 'false' it blocks until new elements available), that's not only complicates the implementation, it also does not permit to poll, for example, several producer-consumer queues.

Let's consider an example. Assume that we have a set of non-blocking producer-consumer queues and deques, that we want to poll from. So the predicate that we want to wait for is "at least one of the containers is not empty". It's very easy to implement with an eventcount:

eventcount ec;

// non-blocking consume (basically, predicate)

void* consume_impl()

{

// poll a set of non-blocking containers

return high_prio_queue.dequeue()

|| normal_prio_queue.dequeue()

|| work_stealing_dequeue.pop()

|| low_prio_queue.dequeue()

|| global_root_task_queue.dequeue();

}

// let's turn it into a blocking consume

void* consume()

{

void* data = 0;

if (data = consume_impl())

// it's the fast-path

// as you see, the eventcount adds nothing here

return data;

// so all containers as if empty, so it's slow-path

for (;;)

{

// raise the cock of the eventcount

ec.prepare_wait();

// check the predicate

if (data = consume_impl())

{

ec.cancel_wait();

return data;

}

// the predicate is still not satisfied,

// so we block

ec.commit_wait();

if (data = consume_impl())

return data;

}

}

// and here is a signalling producing function

void produce(void* data)

{

some_queue_or_deque.enqueue(data);

// just as with a condition variable

// (but without a mutex)

ec.notify();

}

class condition_variable

{

eventcount ec_;

public:

void wait(mutex& mtx)

{

ec_.prepare_wait();

mtx.unlock();

ec_.wait();

mtx.lock();

}

void signal()

{

ec_.notify_one();

}

void broadcast()

{

ec_.notify_all();

}

};

http://software.intel.com/en-us/forums/showthread.php?t=62364

Lazy Concurrent Initialization

Components are sometimes designed to perform initialization tasks when they are first called, rather than when they are created. Lazy concurrent initialization ensures that this initialization occurs only once even when multiple threads may attempt the initialization. Perhaps, the most prevailing use case is Singletons, I am not going to discuss here as to whether singletons are good or bad, it's up to you. However, note that there are other legitimate use cases. For example, consider that we have a large graph of objects, and each object consists of a lightweight "header" and a heavyweight "body", and that body initialization requires heavy computations or a disk/database access. We may want to defer body initialization until a first access, it helps us to reduce initial latency (which is important in interactive applications). Or, perhaps, significant amount of objects won't be initialized at all, and we will determine which objects to initialize only in a concurrent phase of an application, so the only choice is the lazy concurrent initialization.

There are 2 types of initialization: blocking and non-blocking. Blocking is actually not that bad in this context and is usually preferable, because blocking potentially happens only once - during initialization. That is, the first thread announces that it is in process of initialization, and other threads wait (block) for the initialization to complete. And non-blocking initialization refers to the following scenario. If a thread detects that an object is not completely initialized, it starts it's own "shadow" initialization process. When a thread completes the process, it tries to commit it. A first thread succeeds with the commit, while all other threads fail and rollback their initialization.

Here is a straightforward mutex-based implementation of blocking initialization:

T* g_object; // = 0;

std::mutex g_guard;

T* get_or_create()

{

std::mutex::scoped_loсk loсk (g_guard);

if (g_object == 0)

g_object = new T;

return g_object;

}

And here is a non-blocking one:

T* get_or_create()

{

{

std::mutex::scoped_loсk loсk (g_guard);

if (g_object != 0)

return g_object;

}

T* local = new T;

T* instance = 0;

{

std::mutex::scoped_loсk loсk (g_guard);

if (g_object == 0)

{

g_object = local;

return local;

}

instance = g_object;

}

delete local;

return instance;

}

I need to note that lazy concurrent initialization is available in both Windows API, POSIX and C1x/C++0x.

Windows API is almost perfectly designed - it supports both blocking and non-blocking mode, and it supports inversion of control with callbacks and direct control flow. POSIX does not support non-blocking mode nor direct non-inverted control, and more importantly it does not allow to pass a context into an initialization callback (so you need to guess what you are initializing basing only on function address, that is, you can't initialize 2 objects with a single function). C++0x provides blocking initialization with inverted control, but you are able to pass a context to an initialization callback. C1x mimics POSIX.

So why would you potentially want to create your own lazy concurrent initialization facility?

Windows API is appeared only in Windows Vista. POSIX/C1x API has significant drawbacks. C++0x is not readily available now (however g++ quickly catchs up and there is just::thread). Perhaps, you are working in an environment without Windows API/POSIX. Plus separate initialization object inevitably eats up some additional memory, which can be avoided by merging it into the object pointer. And in the end it's just a good exercise in concurrent programming.

The mutex-based implementations won't scale (neither rw-mutex), so let's create a canonical scalable implementation. We are going to employ the so called double-checked locking pattern, where the first check (fast-path) is a read access. Here is a blocking version:

T* g_object; // = 0

std::atomic<bool> g_is_initialized; // = false

std::mutex g_guard;

T* get_or_create()

{

// read-only fast-path

if (g_is_initialized.load(std::memory_order_acquire))

return g_object;

// slow-path

std::mutex::scoped_loсk loсk (g_guard);

if (g_is_initialized.load(std::memory_order_acquire))

return g_object;

g_object = new T;

g_is_initialized.store(true, std::memory_order_release);

}

Note that the slow-path is executed only during initialization, while the object is initialized all threads will go fast-path. And the fast-path is physically read-only, so the algorithm will scale linearly.

And here is a non-blocking one:

std::atomic<T*> g_object; // = 0

T* get_or_create()

{

// read-only fast-path

T* local = g_object.load(std::memory_order_acquire);

if (local != 0)

return local;

// slow-path

T* shadow = new T;

if (g_object.compare_exchange_strong(local, shadow,

std::memory_order_acq_rel))

return shadow;

delete shadow;

// compare_exchange_strong() updates comperand on failure,

// so we get committed version of the object in 'local'

return local;

}

Move on to Elimination of Memory Fences

Elimination of Memory Fences

Now the only remained problem is that nasty acquire fence on the fast-path of both algorithms. Acquire memory fences do not hinder scalability, however they still have some associated costs (on a par with few tens of cycles). Here I need to make a proviso - on some hardware platforms (most notably x86 and SPARC TSO) acquire fences are implicit and implied with each load, that is, they are costless no-ops. So if you are targeting only on such platforms, you are OK with the version which issues an acquire fence on fast-path. However, do not fall into the fallacy that you may remove them completely - you still need to ensure proper code generation by a compiler.

There are two ways to eliminate the fence: weaken it to the consume fence, or completely eliminate it via thread-local cache trick.

If there is a data dependency between the synchronization load (load of a pointer or a flag) and an associated data, then we can weaken acquire fence to consume fence. Consume fence is a costless no-op on most modern architectures (to the best of my knowledge the only architecture that requires consume fence is now almost dead DEC Alpha). Here is an example with a data-dependency (it's a union of an initialization function and surrounding code as if compiler inlines initialization function):

T* local = g_object.load(std::memory_order_consume);

if (local != 0)

printf("%d", local->data);

Here is an example w/o a data-dependency:

if (g_is_initialized.load(std::memory_order_acquire))

printf("%d", g_object->data);

And in this case we need a fair acquire fence, otherwise a compiler or hardware can reorder it as:

tmp = g_object->data;

// (*)

if (g_is_initialized.load(std::memory_order_acquire))

printf("%d", tmp);

Which will clearly lead to problems if a thread will be preempted in (*) while another thread will initialize the object and set g_is_initialized flag.

So, here a blocking initialization which uses emitted data-dependency to weaken acquire fence to consume fence. It can be considered virtually zero-overhead on fast-path on most modern hardware:

std::atomic<T*> g_object; // = 0

std::mutex g_guard;

T* get_or_create()

{

// read-only fast-path

T* local = g_object.load(std::memory_order_consume);

if (local != 0)

return local;

// slow-path

std::mutex::scoped_loсk loсk (g_guard);

local = g_object.load(std::memory_order_relaxed);

if (local == 0)

{

local = new T;

g_object.store(local, std::memory_order_release);

}

return local;

}

But don't hurry, the problem is that sometimes you don't actually have a data-dependency where you may think you have a one (do not fall into the fallacy like some people do). Consider the following code:

ILog* g_log; // = 0

class Singleton

{

static int s_var; // = 0

Singleton()

{

g_log = new Log;

s_var = rand();

}

void foo()

{

g_log->log(s_var);

}

};

Singleton* instance = get_or_create();

instance->foo();

Is there a data-dependency or not? Consider what we have here in essence:

// it's inlined get_or_create()

Singleton* instance = g_instance.load(std::memory_order_consume);

if (instance)

// and it's inlined Singleton::foo()

g_log->log(s_var);

See? There are no data-dependencies between the load of g_instance and loads of g_log and s_var. They are completely independent loads of global variables. So be careful with memory_order_consume, and if you are creating a general purpose library you need to either reject memory_order_consume (luckily there is another way to eliminate the acquire fence) or distinctly warn your users about restrictions.

There is an interesting trick based on thread-local storage that allows to completely eliminate the acquire fence. Basically each thread just caches a pointer to the object in thread-local storage:

T* g_object; // = 0

thread_local T* t_object; // = 0

std::mutex g_guard;

T* get_or_create()

{

T* obj = t_object;

if (obj != 0)

return obj;

// slow-path

std::mutex::scoped_loсk loсk (g_guard);

if (g_object == 0)

g_object = new T;

t_object = g_object;

return g_object;

}

Access to thread local storage is on par with 2 indirect loads, that is, it's very fast. However on x86/SPARC TSO version with the acquire fence is a bit faster.

This version requires a thread-local storage slot and a mutex per each lazily initialized object, which may be expensive in some contexts. There is a way to eliminate this, or more precisely to amortize this, that is, there is a single slot and single mutex system-wide (for all lazily initialized objects):

#define UNINITIALIZED UINT64_MAX

#define INITIALIZING (UINT64_MAX - 1)

// per-object data

T* g_object; // = 0

std::atomic<uint64_t> g_once; // = UNINITIALIZED

// global data

std::atomic<uint64_t> g_counter; // = 0

thread_local uint64_t t_counter; // = 0

std::mutex g_guard;

T* get_or_create()

{

uint64_t counter = g_once.load(std::memory_order_relaxed);

if (counter > t_counter)

{

// slow-path

g_guard.loсk();

counter = g_once.load(std::memory_order_relaxed);

if (counter == UNINITIALIZED)

{

g_once.store(INITIALIZING, std::memory_order_relaxed);

g_guard.unloсk();

g_object = new T;

g_guard.loсk();

counter = g_counter.fetch_add(1, std::memory_order_relaxed) + 1;

g_once.store(counter, std::memory_order_release);

}

else

{

while (g_once.load(std::memory_order_relaxed) == INITIALIZING)

std::this_thread::yield();

}

t_counter = g_counter.load(std::memory_order_relaxed);

g_guard.unloсk();

}

return g_object;

}

A single mutex can hinder scalability if there are a lot of lazily initialized objects, so this solution can be further improved by using a hash table of mutexes (and associated counters).

The last thing regarding lazy initialization is that you need to consider necessity of static initialization of the primitive. If you are creating a reusable solution, then it's possible that it will be used "before main()", that is, threads are started from constructors of global objects and from initialization routines of dynamic libraries. Then you need to provide either initializing macro or a C++0x constexpr constructor.

For example, pthread_once() provides it in the form of:

pthread_once_t g_once = PTHREAD_ONCE_INIT;

Potential problem is that all primitives that you use must support static initialization as well. That is, you can't use, for example, CRITICAL_SECTION or std::mutex, because they does not support static initialization. However, you can use pthread_mutex_t, because it provides static initializer PTHREAD_MUTEX_INITIALIZER.

Well, that's mainly all I can tell about lazy initialization.

Object Life-time Management

Object life-time management is one of the fundamental problems in concurrent algorithms, to understand the problem consider the following simple lockfree stack algorithm:

struct node_t

{

std::atomic<node_t*> next;

T data;

};

struct stack_t

{

std::atomic<node_t*> head;

};

void push(stack_t* stack, node_t* node)

{

node_t* cmp = stack->head.load(std::memory_order_relaxed);

do node->next.store(cmp, std::memory_order_relaxed);

while (!stack->head.compare_exchange_weak(cmp, node, std::memory_order_release));

}

node_t* pop(stack_t* stack)

{

node_t* node = stack->head.load(std::memory_order_consume);

for (;;)

{

if (node == 0)

break;

// (***)

node_t* next = node->next.load(std::memory_order_relaxed);

if (stack->head.compare_exchange_weak(node, next, std::memory_order_release))

break;

}

return node;

}

The article is not yet completed, however you can check out one of the solutions: Differential Reference Counting

Differential Reference Counting

Differential reference counting is a reference counting with strong thread-safety. So what is that strong thread safety and how does it differ from plain old atomic reference counting?

Strongly thread-safe object permits concurrent read and write accesses, while basicly thread-safe object permits either concurrent read accesses or exclusive write accesses (basically, "as safe as int"). Consider the following example:

some_ptr<T> g_ptr;

// thread 1

T* ptr = g_ptr.acquire(); // read access

...

ptr->release();

// thread 2

T* ptr = new T

T* prev = g_ptr.exchange(ptr); // write access

prev->release();

If some_ptr is only a basicly thread-safe pointer (for example, boost::shared_ptr, which is "safe as int"), then the usage is illegal - the program can crash or whatever. But if some_ptr is a strongly thread-safe pointer, then the usage is perfectly legal.

To understand the problem consider the standard implementation of usual reference counting:

T* acquire(T** pp)

{

T* p = *pp; // dereference

//(***)

std::atomic_fetch_add(&p->ref_count, 1, std::memory_model_relaxed);

return p;

}

The dereference and the increment are not atomic. That is, the increment is an action on an object reference for which we don't yet own, and that's illegal - to do any action on an object we need to own a reference for it first. Kind of cyclic dependency. If a thread is preempted in (***), and another thread will free the object meanwhile (remember the first thread is not yet incremented the counter), then the first thread will do the increment on the already freed object (which can cause all sorts of bad things).

So what we need is an atomic load of the pointer and increment of the counter. And here differential reference counting kicks in. Don't worry, soon you will understand why it's called 'differential'. Here is kind of structural diagram of the thing:

Contrast it to plain old reference counting:

I should say at once that differential reference counting in it's straightforward form requires double-word atomic RMW operations (either XADD and XCHG or CAS). However there are specialized implementations that does not require that, they usually combine the counter and the pointer (or a substitute) into a single word, for example, Wait-free Object Storage with Single-word Atomic Operations.

An object can be deleted when both inner counters are equal to 0 (strong_counter == basic_counter == 0). And the outer counter is used as a transient cache, it collects all "+1", while inner counter collects "-1", thus the name - differential. When a pointer is updated with a new value, outer counter value is transferred to the inner counter.

Differential reference counting features 2 types of pointers: there is no established terminology so let's call them a 'strong' pointer - one that supports arbitrary concurrent accesses (that is, one thread acquires/copies a pointer, and another thread updates the pointer), and a 'basic' pointer - one that is thread-safe as int (that is, supports either concurrent acquire/copy or exclusive updates).

Now let's decide on operations that we want to support.

	
	We need an operation that allows to obtain a basic pointer from a strong pointer:

	acquire(strong_ptr) -> basic_ptr

	We need a set of operations that allow to update a strong pointer:

	update(strong_ptr, basic_ptr)

	exchange(strong_ptr, basic_ptr) -> basic_ptr

	cas(strong_ptr, basic_ptr, basic_ptr) -> basic_ptr

	And we need standard operations for basic pointers:

	acquire(basic_ptr)

	release(basic_ptr)

Now let's try to implement the whole thing.

Differential Reference Counting: Implementation

First, let's outline the data structures and layouts. What we need is a base class for reference-counted objects, strong pointer layout and definitions of 2 types of pointers:

struct drc_base

{

// low word is 'strong inner' counter

// high word is 'basic inner' counter

atomic_dword state;

// destruction function

void (*dtor)(drc_base*);

};

struct strong_ref

{

// low word is pointer

// high word is 'outer' counter

atomic_dword state;

};

typedef drc_base* basic_ptr;

typedef strong_ref* strong_ptr;

The interface we are going to implement is as follows:

/** Initializes the reference-counted object pointed by 'obj'

* 'dtor' will be used to destroy the object,

* when number of references drops to 0

*/

void basic_init (basic_ptr ptr, void (*dtor)(drc_base*));

/** Plain acquire with basic thread-safety

* Can be called only if a thread already owns a reference to the object

*/

void basic_acquire (basic_ptr ptr);

/** Releases a reference to the object pointed by 'obj'

*/

void basic_release (basic_ptr ptr);

/** Initializes strong pointer 'ptr' with initial value of 'obj'

*/

void strong_init (strong_ptr ptr, basic_ptr obj);

/** Strongly thread-safe acquire

*/

basic_ptr strong_acquire (strong_ptr ptr);

/** Stores object 'obj' to the pointer 'ptr'

*/

void strong_store (strong_ptr ptr, basic_ptr obj);

/** Stores object 'obj' to the pointer 'ptr',

* and returns previous value

*/

basic_ptr strong_exchange (strong_ptr ptr, basic_ptr obj);

/** Stores object 'xchg' to the pointer 'ptr'

* if it's value is equal to '*cmp',

* on failure updates 'cmp' with current value

*/

bool strong_compare_exchange (strong_ptr ptr,

basic_ptr* cmp, basic_ptr xchg);

Invariants and logic we are going to implement are as follows. Inner strong counter is the number of strong pointers to the object out there. Inner basic counter is the number of usual references to the object out there. When both counters drop to zero, the object is destroyed. Outer counter temporarily collects increments for the inner basic counter, which are transfered to the latter when the strong pointer is updated to point to another object (before that the object can't be destroyed anyway, because, well, there is a strong pointer to it).

Let's put it all together:

Below is the 'basic' part of implementation, I hope it's mostly evident:

void basic_init(basic_ptr ptr, void (*dtor)(drc_base*))

{

// crate it with 0 strong references and 1 basic reference

atomic_dword_store(&ptr->state, 0, 1, memory_order_relaxed);

ptr->dtor = dtor;

}

void basic_acquire(basic_ptr ptr)

{

// add 1 basic reference

basic_acquire(ptr, 0, 1);

}

void basic_release(basic_ptr ptr)

{

// remove 1 basic reference

basic_release(ptr, 0, 1);

}

// helper function, used elsewhere

static void basic_acquire(basic_ptr ptr, uintptr_t strong, uintptr_t basic)

{

uintptr_t prev_lo, prev_hi; // we are not interested in previous values here

atomic_dword_fetch_add(&ptr->state, strong, basic, &prev_lo, &prev_hi, memory_order_relaxed);

}

// helper function, used elsewhere

static void basic_release(basic_ptr ptr, uintptr_t strong, uintptr_t basic)

{

uintptr_t prev_lo, prev_hi;

atomic_dword_fetch_add(&ptr->state, -(intptr_t)strong, -(intptr_t)basic, &prev_lo, &prev_hi, memory_order_relaxed);

// if both counters drop to zero, destroy the object

if (prev_lo - strong == 0 && prev_hi - basic == 0)

ptr->dtor(ptr);

}

And here is the 'strong' part, it's trickier, so pay attention to details (and comments):

void strong_init(strong_ptr ptr, basic_ptr obj)

{

// first, we need to announce another strong pointer to the object

basic_acquire(obj, 1, 0);

// then setup the strong pointer with 0 'outer' counts

atomic_dword_store(&ptr->state, (uintptr_t)obj, 0, memory_order_relaxed);

}

basic_ptr strong_acquire(strong_ptr ptr)

{

uintptr_t prev_lo, prev_hi;

// atomically increment 'outer' counter and load the current pointer

atomic_dword_fetch_add(&ptr->state, 0, 1, &prev_lo, &prev_hi, memory_order_acquire);

return (basic_ptr)prev_lo;

}

void strong_store(strong_ptr ptr, basic_ptr obj)

{

if (obj)

{

// since we are going to store it in a strong pointer,

// we need to increment the inner strong counter

basic_acquire(obj, 1, 0);

}

uintptr_t prev_obj, prev_count;

// atomically exchange pointer and counter

atomic_dword_exchange(&ptr->state, (uintptr_t)obj, 0, &prev_obj, &prev_count, memory_order_acq_rel);

if (prev_obj)

{

// pay attention to what is happening here

// we are revoking 1 strong reference, since the object is not stored in the strong pointer anymore

// plus, we are transferring cached in the outer counter references to the inner basic counter

basic_release((basic_ptr)prev_obj, 1, -(intptr_t)prev_count);

}

}

basic_ptr strong_exchange(strong_ptr ptr, basic_ptr obj)

{

// the function mostly repeats strong_store()

// except that we hold back 1 basic reference,

// because the function returns pointer to an object,

// and the object must be acquired, otherwise it can be destroyed

if (obj)

basic_acquire(obj, 1, 0);

uintptr_t prev_obj, prev_count;

atomic_dword_exchange(&ptr->state, (uintptr_t)obj, 0, &prev_obj, &prev_count, memory_order_acq_rel);

if (prev_obj)

basic_release((basic_ptr)prev_obj, 1, -(intptr_t)(prev_count + 1));

return (basic_ptr)prev_obj;

}

bool strong_compare_exchange(strong_ptr ptr, basic_ptr* cmp, basic_ptr xchg)

{

if (xchg)

{

// since we are going to store it in a strong pointer,

// we need to increment the inner strong counter

basic_acquire(xchg, 1, 0);

}

uintptr_t cur_lo, cur_hi;

// we need to do initial load in order to obtain the counter value

atomic_dword_load(&ptr->state, &cur_lo, &cur_hi, memory_order_relaxed);

for (;;)

{

// compare pointer values

if (*cmp != (basic_ptr)cur_lo)

{

// if the pointers do not match,

// we need to release comparand,

// because we are going to overwrite it

if (*cmp)

basic_release(*cmp, 0, 1);

// then, acquire current value and store it in cmp

// (strictly saying, we can acquire another object, not the cur_lo,

// and theretically it can be equal to cmp, so it's kind of weak CAS,

// that is, it can fail spuriously)

*cmp = strong_acquire(ptr);

// and finally revert inner strong counter,

// since we did not stored it in the strong pointer

if (xchg)

basic_release(xchg, 1, 0);

return false;

}

if (atomic_dword_compare_exchange(&ptr->state, &cur_lo, &cur_hi, (uintptr_t)xchg, 0, memory_order_acq_rel))

{

// it the CAS succeeded, update counters as in strong_store()

if (cur_lo)

basic_release((basic_ptr)cur_lo, 1, -(intptr_t)cur_hi);

return true;

}

// otherwise, retry the operation

// (perhaps, it's just the counter that is changed)

}

}

Note that in 64-bit mode inner counters can be 32-bit and consequently combined into a single word, this can be of help if a 64-bit architecture does not support double-word atomic operations. Moreover, x86 architecture (IA-32, Intel64) supports only double-word CAS (but not XADD, XCHG), so current implementation is only lockfree on it (because of the CAS-loops); if counters are combined into a single word then the implementation will become wait-free.

Also in 64-bit mode, pointers frequently can be "compressed", for example, on Intel64/Windows it's possible to compress pointers into 39 bits, so 25 bits remain for the counter. This allows to pack strong pointer (ptr+counter) into a single word as well.

Here is an example of how strongly thread-safe reference counting can be applied to an abstract network router, it's kind of the main usage pattern:

struct routing_table : drc_base

{

// ...

};

strong_ref g_routing_table;

void worker_thread()

{

for (;;)

{

request_t* req = get_request();

routing_table* table = (routing_table*)strong_acquire(&g_routing_table);

route(req, table);

basic_release(table);

}

}

void updater_thread()

{

for (;;)

{

std::this_thread::sleep(1000);

routing_table* current_table = (routing_table*)strong_acquire(&g_routing_table);

routing_table* new_table = create_new_routing_table(current_table);

strong_store(&g_routing_table, new_table);

basic_release(current_table);

basic_release(new_table);

}

}

Credits for the algorithm go to Joseph Seigh and his awesome Atomic-Ptr-Plus, Chris Thomasson and his proxy-collector, and finally to Alexander Shuvaev who invented how to make the algorithm waitfree.

I've attached the full implementation along with small single-threaded test and implementation of atomic_dword for IA-32/Intel64 below.

Tips & Tricks

In this section I collect various separate topics related to design and implementation of synchronization algorithms. Some of them are more general, and some are very specific.

Contents:

Spinning

Per-processor Data

Pointer Packing

Faster Fibers/Coroutines

Spinning

There are 2 ways to implement waiting in synchronization algorithms: OS blocking and spinning.

OS blocking generally requires the following steps. A waiter thread must check a condition which it wants to wait for, [register itself as a waiter], and then block itself by means of a semaphore, event, condition variable or whatever. A notifier must determine as to whether there are waiters or not, [unregister one or several waiters], and then notify them via a semaphore, event, etc. OS blocking has some pros and cons as compared to spinning: it's significantly harder to implement, it's penalizes fast-path performance (because notifiers have to check for waiter), but it's more efficient for long-term waiting (because waiters do not burn CPU cycles).

Spinning generally requires the following steps. A waiter checks for the condition, backoffs, checks for the condition, backoffs, and so on. As you see, notifiers are not involved in the process. Spinning is easier to implement, it does not penalize fast-path performance (the protocol is executed by an otherwise idle thread), however it's not optimal for long-term waiting and/or impacts latency (because a waiter may be in a "deep" backoff when the condition is satisfied). If spinning is used, then nobody except the thread does not know what it's waiting for; as opposed to blocking, when the thread needs to communicate what it's waiting for (otherwise, nobody will be able to notify it).

Let's concentrate on spinning, what types of spinning there are, how it may be implemented and so on.

There are 3 types of spinning:

- Active or processor-level spinning.

A thread notifies the processor (but not OS) that it's waiting for something. Notification of processor is done by means of instructions like PAUSE (x86) or hint0 (IA-64) (other architectures may have similar instructions - check a manual for your processor). However OS thinks that it's just a normal thread doing useful work. As a result, CPU cycles are senselessly burned during waiting.

Notification of processor is important, never implement waiting just as:

while (!something) {}

Instruction like PAUSE (1) improve performance (help to fight memory ordering issues inside of a processor), (2) decrease power consumption, (3) further improve performance in the context of HyperThreading/Simultaneous Multithreading/Chip-level Multithreading (because a processor gives preference to siblings of waiting thread). So the code should look like:

while (!something)

{

_mm_pause(); // for MSVC/IA-32

__yield(); // for MSVC/IA-64

__asm__ __volatile__ ("pause"); // for gcc/IA-32

}

Note that active spinning is useless on single-core/single-processor systems, because the condition can't possibly change until the thread gives up control. Active spinning is useful on systems with hardware concurrency (multicore/multiprocessor), because it assumes that another thread will change the condition while the thread spins.

- Passive or OS level spinning.

A thread notifies OS that it's waiting for something, so that OS is able to switch control to another runnable thread (if any). Passive spinning is good because if there is some other useful work to do (a runnable thread), OS will switch to it - that useful work should be done sometime anyway, right? So why not switch to it now, when the thread can't make useful forward progress anyway? However in return passive spinning increases latecy for a waiting thread. What is more important depends on an application.

On Linux passive spinning is implemented with pthread_yield(), or nanosleep() for "deeper" spin.

On Windows situation is a bit more involved. There is SwitchToThread() which is limited to the current processor. There is Sleep(0) which is limited to threads of no-less priority (it's unclear as to whether it's intra-processor ot inter-processor). Finally, there is Sleep(1) which should cover all cases (all priorities/all processors).

- Hybrid spinning.

Hybrid spinning tries to combine advantages of both approaches. That is, do active spinning for some time (to account for the case when the condition is satisfied soon by a thread running on another processor), then switch to passive spinning to not burn too much CPU cycles aimlessly.

Below is an example of how hybrid spinning may be implemented on Windows:

void do_backoff(int& backoff) // backoff is initialized to 0

{

if (backoff < 10)

_mm_pause();

else if (backoff < 20)

for (int i = 0; i != 50; i += 1) _mm_pause();

else if (backoff < 22)

SwitchToThread();

else if (backoff < 24)

Sleep(0);

else if (backoff < 26)

Sleep(1);

else

Sleep(10);

backoff += 1;

}

Note that we generally want to increase delay during successive failures to find the condition satisfied. It helps to reduce contention and/or improves overall system's efficiency.

Hybrid spinning must be considered as a default option, because it's all things to all men.

However there are some exceptions:

- On single-core/single-processor systems passive spinning should be employed.

- If a system is completely dedicated to the application (that is no other noticeable work to do), and processors are not oversubscribed with threads, then pure active spinning may be used – there is no useful to do anyway, so we can burn CPU cycles right and left. Such situation is usally the case in the context of HPC (high-performance computing). However, there is still little sense in active spinning for more than, let's say, several milliseconds.

- In ultra low-latency systems active spinning may help to reduce latecy of a critical path.

- If a really long waiting is expected than one may use pure passive spinning. No need to bother yourself with implementation of hybrid spinning.

Per-processor Data

Data sharing is bad and it kills scalability, so considerable amount of scalable synchronization algorithms rely on per-thread data. For example, most scalable memory allocators keep per-thread caches of memory blocks. Another good example is task schedulers which keep per-thread task pools. However, sometimes it may be beneficial to keep per-processor rather than per-thread data (here by a processor I mean any notion of a hardware thread - core of a multicore processor or a HyperThread). Why? Because number of processors may be significantly less than number of threads. For example, consider a machine with 16 hardware threads, and a program that creates, let's say, 4 software threads per each hardware threads (quite reasonable for occasional IO blocking masking). So our imaginary scalable memory allocator needs to keep 48 memory caches less if uses per-processor data. Another advantage is that number of processors usually can be considered as constant, this greatly simplifies algorithm design. While threads are generally come and go, so algorithms that use per-thread data need to use dynamic thread registration/deregistration as well as some form of offloading (what if a thread terminates while not all of it's memory blocks are freed?).

Since a processor executes only one software thread at a time, contention and cache coherence is not a problem. Two successive threads running on a single processor do not contend with each other and able to reuse allocator's data in processor caches. However, the problem is that a thread can be re-scheduled to another processor in the middle of an operation on per-processor data, so generally you need all the synchronization in place as if it's a plain global data (contrast it with per-thread data which allows to eliminate all synchronization).

Per-processor data is not so widely used in user-space, but OS kernels use per-processor (or per-CPU in terms of Linux kernel) data on a routine basis. Kernel code is able to mask and unmask interrupts (in order to prevent re-scheduling to another processor) and to obtain number of current CPU easily. That makes per-CPU data almost ideal (at least for resource pooling).

Masking of interrupts is an impermissible luxury for user-space code, but at least we may try to learn how to obtain current CPU number efficiently. So what is available for that?

On Windows there is GetCurrentProcessorNumber(), however it's available only since Vista. On Linux there is vgetcpu(), however I am not sure as to whether it has made it into main kernel or not. sched_getcpu() seems to be quite heavyweight previously, but it become cheaper nowadays. IA-32/Intel64 instruction set contains CPUID instruction that returns, among others, an APIC ID, which can be mapped to a CPU number (it seems that cores and HyperThreading siblings have the same APIC ID, though).

Latest x86 processors feature RDTSCP instruction which returns processor number as well (Intel introduced it in Core i7, and AMD some earlier). You can determine it's presence with CPUID instruction. RDTSCP seems to be quite heavyweight (as well as CPUID), but we can try to amortize accesses to it in the following way:

struct current_processor_t

{

unsigned number;

unsigned timestamp;

unsigned period;

};

__declspec(thread) current_processor_t current_processor = {0, 0, 1};

unsigned get_current_processor()

{

current_processor_t& cp = current_processor;

if (0 == --cp.period

|| cp.timestamp != *(unsigned*)0x7FFE0000) // compare tick count

update_current_processor();

return cp.number;

}

__declspec(noinline) void update_current_processor()

{

current_processor_t& cp = current_processor;

cp.timestamp = *(unsigned*)0x7FFE0000; // update tick count

cp.period = 20; // subject to tweaking

__rdtscp(&cp.number);

}

Because of the amortization it works quite fast and gives a reasonable precision. However, on Windows a better solution is the so called "red pill" trick based on SIDT instruction (which is accidentally available in user-space). SIDT instructions returns a value of the interrupt descriptor table register (IDTR), the value itself is irrelevant for us, however, IDT is different on each processor (at least on Windows). So we just need to map it to a processor number, the mapping can be trivially constructed by probing:

struct idt_proc_cache_t

{

unsigned cached_idt;

unsigned cached_proc;

};

#pragma pack(push, 1)

struct idt_desc_t

{

unsigned short size;

unsigned base;

};

#pragma pack(pop)

unsigned idt_count;

unsigned* idt_table;

__declspec(thread) idt_proc_cache_t idt_proc_cache;

unsigned get_current_processor()

{

// obtain IDT value

idt_desc_t idt;

__sidt(&idt);

// compare it with the cached value,

// if they are equal, then return cached processor number

idt_proc_cache_t& cache = idt_proc_cache;

if (cache.cached_idt != idt.base)

{

// otherwise map current IDT to processor number,

// and cache results

for (unsigned i = 0; i != idt_count; ++i)

{

if (idt_table[i] == idt.base)

{

cache.cached_idt = idt.base;

cache.cached_proc = i;

break;

}

}

}

return cache.cached_proc;

}

int init_idt_mapping()

{

SYSTEM_INFO info;

GetSystemInfo(&info);

idt_count = info.dwNumberOfProcessors;

idt_table = (unsigned*)_aligned_malloc(idt_count * sizeof(unsigned), 128);

if (idt_table == 0)

return -1;

HANDLE th = CreateThread(0, 0, init_idt_mapping_impl, 0, 0, 0);

WaitForSingleObject(th, INFINITE);

CloseHandle(th);

return 0;

}

DWORD __stdcall init_idt_mapping_impl(void*)

{

for (unsigned i = 0; i != idt_count; i += 1)

{

SetThreadAffinityMask(GetCurrentThread(), 1 << i);

idt_desc_t idt;

__sidt(&idt);

idt_table[i] = idt.base;

}

return 0;

}

It seems that on pre-Vista Windows current processor can be obtained with LSL(59h)>>14 for 32-bit Windows and LSL(53h)>>14 for 64-bit Windows (I can't test it right now):

__declspec (naked) unsigned get_current_proc_32 ()

{

__asm

{

mov ecx, 59h

lsl eax, ecx

shr eax, 0Eh

retn

}

}

Note that if you are in doubt how to implement the function, you can always return just a random number. It should not compromise correctness (remember in user-space it's no more than an optimization - a thread can be rescheduled to another CPU straight after it has obtained the number), and will give you a randomized distributed data structure, which is not that bad after all. And for testing you may implement is as always returning 0, it will provide sort of worst-case behavior (which is good to testing).

Here you may see an example of usage of the technique: Distributed Reader-Writer Mutex

Pointer Packing

On modern architectures atomic RMW (read-modify-write) operations are able to operate either on single words or on double words, that is, on 64/128 bits on 32/64 bit architectures at most. Moreover, on some 64 bit architectures (some early AMD64, SPARC) double word atomic operations are not available.

And sometimes it's necessary to fit more data into that limited width. If we need to fit one or several pointers, then we are lucky, because pointers usually contain some unused bits. Let's see what we can do.

Due to alignment requirements several low bits of pointers are always zero. To get to know as to how many low bits are zero, you need to consult documentation on alignment for your memory allocator. However, it's usually at least 3 or 4 bits (that is, 8 or 16 byte alignment). Some allocators provide 64 byte alignment to prevent false-sharing (that's 6 zero bits). Alternatively you can ensure specific alignment with functions like _aligned_malloc()/posix_memalign(). So, this way we can take away 3-6 low bits.

Current Intel64/AMD64 architecture provides 48-bit logical addressing (yes, with respect to memory addressing they are not 64-bit machines, they are 48-bit). Moreover, Windows limits logical addresses to 44 bits, plus 44-th bit is always set for kernel-space addresses, and reset for user-space addresses. So, on Windows we can take away 21 high bits. On Linux situation is worse in this respect, because it provides fair 48-addressing, so we can take away only 16 high bits. However, be careful with that, because logical address space can be extended in future.

So on Windows/Intel64 pointer packing/unpacking may look as:

size_t const packed_ptr_size = 39;

size_t const lo_bits = 4;

uintptr_t const lo_mask = ((1ull << 4) - 1);

uintptr_t const hi_mask = ~((1ull << 43) - 1);

uintptr_t ptr_pack(void const volatile* p)

{

uintptr_t v = (uintptr_t)p;

assert((v & lo_mask) == 0);

assert((v & hi_mask) == 0);

v = v >> lo_bits;

return v;

}

void* ptr_unpack (uintptr_t v)

{

uintptr_t p = (v << lo_bits) & ~hi_mask;

return (void*)p;

}

That's actual trick used in implementation of Interlocked Singly Linked Lists in Windows. And, as far as I understand, that is the reason behind artificial limiting logical addresses to 44-bits - they need to fit a pointer (39 bits) + node count (16 bits) + ABA counter (9 bits) into 64 bits. If addressing would be fair 48 bits, then it would leave only 5 bits for ABA counter which is indecently small.

Such packing allows one to fit, for example, 3 pointers and an 11-bit counter into 128 bits (3*39 + 11 = 128).

Of course such tricks are quite dangerous, and when you apply it you better carefully check processor/OS versions beforehand. Most likely you need some backoff mechanism (perhaps mutex-based) as well. Alternatively you can consider it vise versa - you have a main portable mutex-based algorithm, and an optimization for some platforms.

However, there is safer and portable way to get "smaller" pointers - we may allocate objects from a fixed-size pool, so that pointers can be replaced with offsets into the pool. If objects are fixed-size as well, then we may consider a pool as an array and pointers as indexes into it. For example, if we reserve 4GB for the pool (no need to actually allocate them, we just need to reserve a continuous region of memory in process's address space), and object size is 128 bytes, "pointers" effectively become only 25 bits - we can fit 5 (!) such pointers into single 128 bit double word and operate on it atomically with CMPXCHG16B.

Faster Fibers/Coroutines

Windows provides quite efficient API for fiber/coroutine management, fiber switch costs just a handful of instructions - it basically saves all registers to the current fiber context and restores the registers from the new fiber context. Unix provides almost the same API, except one thing - each ucontext switch causes 2 syscalls: one to save current signal mask and another to restore signal mask. It makes it orders of magnitude slower.

C historically provides another API which does basically the same thing - setjmp/longjmp. It turns out that it's possible to combine ucontext and setjmp/longjmp to get almost portable fast fibers without platform-specific assembly code. The idea is that we create new contexts with makecontext(), and then use setjmp/longjmp to switch between them.

Relacy Race Detector heavily uses fibers to emulate threads. I've implemented the trick in version 2.4, and it basically boils down to replacement of the following code:

typedef ucontext_t fiber_t;

void create_fiber(fiber_t& fib, void(*ufnc)(void*), void* uctx)

{

getcontext(&fib);

size_t const stack_size = 64*1024;

fib.uc_stack.ss_sp = (::malloc)(stack_size);

fib.uc_stack.ss_size = stack_size;

fib.uc_link = 0;

makecontext(&fib, ufnc, 1, uctx);

}

inline void switch_to_fiber(fiber_t& fib, fiber_t& prev)

{

swapcontext(&prev, &fib);

}

with the following code:

struct fiber_t

{

ucontext_t fib;

jmp_buf jmp;

};

struct fiber_ctx_t

{

void(* fnc)(void*);

void* ctx;

jmp_buf* cur;

ucontext_t* prv;

};

static void fiber_start_fnc(void* p)

{

fiber_ctx_t* ctx = (fiber_ctx_t*)p;

void (*ufnc)(void*) = ctx->fnc;

void* uctx = ctx->ctx;

if (_setjmp(*ctx->cur) == 0)

{

ucontext_t tmp;

swapcontext(&tmp, ctx->prv);

}

ufnc(uctx);

}

inline void create_fiber(fiber_t& fib, void(*ufnc)(void), void* uctx)

{

getcontext(&fib.fib);

size_t const stack_size = 64*1024;

fib.fib.uc_stack.ss_sp = (::malloc)(stack_size);

fib.fib.uc_stack.ss_size = stack_size;

fib.fib.uc_link = 0;

ucontext_t tmp;

fiber_ctx_t ctx = {ufnc, uctx, &fib.jmp, &tmp};

makecontext(&fib.fib, (void(*)())fiber_start_fnc, 1, &ctx);

swapcontext(&tmp, &fib.fib);

}

inline void switch_to_fiber(fiber_t& fib, fiber_t& prv)

{

if (_setjmp(prv.jmp) == 0)

_longjmp(fib.jmp, 1);

}

Note that I am using _setjmp/_longjmp instead of setjmp/longjmp (that usually also save and restore signal mask). On Linux it gave me 2.5x speedup instantly, while on Darwin that single change gave me astonishing 7x speedup.

A fly in the ointment is that some builds on some platforms (namely, release builds on Linux) start crashing with the "longjmp causes uninitialized stack frame" error message. It's quite reasonable because a trivial debug check is able to detect that longjmp tries to jump upwards which is definitely incorrect (of course in reality the code does not tries to jump upwards, it tries to jump to a completely unrelated stack). The good news is that the check can be suppressed with #undef _FORTIFY_SOURCE.

Thread Completion Notifications

DllMain thread start/end notifications without a DLL

DLL_PROCESS_ATTACH

DLL_PROCESS_DETACH

DLL_THREAD_ATTACH

DLL_THREAD_DETACH

pthread_key_create - destructor

typedef DWORD rl_tss_slot_t;

static void (*rl_tss_dtor)();

static __declspec(thread) int volatile tls_initializer;

void __stdcall on_tls_callback(void* hinst, unsigned long reason, void* unused)

{

(void)hinst;

(void)unused;

if (reason == 3 && rl_tss_dtor)

rl_tss_dtor();

}

#pragma data_seg(push, old_seg)

#ifdef RL_M32

pragma data_seg(".CRT$XLB")

#else

pragma const_seg(".CRT$XLB")

#endif

__declspec(dllexport) void (__stdcall * volatile p_on_tls_callback)(void*, unsigned long, void*) = on_tls_callback;

#pragma data_seg(pop, old_seg)

http://svn.boost.org/svn/boost/trunk/libs/thread/src/win32/tss_pe.cpp

Induced Deadlocks

http://groups.google.com/group/comp.programming.threads/browse_frm/thread/8217c4fca3e1fcb5#

http://groups.google.com/group/comp.programming.threads/browse_frm/thread/b7d3b8c08f9ca3c6

SIGSEGV/SEH Trap

http://msdn.microsoft.com/en-us/library/ms684121(v=vs.85).aspx

http://groups.google.com/group/lock-free/browse_frm/thread/c8e3201da4a6a300

http://en.wikipedia.org/wiki/Software_transactional_memory

Links

Below is a collection of links to various resources related to synchronization algorithms.

Books

To the be best of my knowledge there is only one comprehensive book on synchronization algorithms. And, as you may guess, by book on synchronization algorithms I do not mean a one that considers implementation of a producer-consumer queue my means of a mutex and a condition variable. By book on synchronization algorithms I mean a one that considers memory models, atomic RMW operations, lockfree queues, implementation of mutexes, lockfree lists and hash-maps and so on. And here it is:

The Art of Multiprocessor Programming

The authors are Maurice Herlihy and Nir Shavit - also the authors of the better part of research papers mentioned below - so, trust me, they know what they are writing about.

Blogs & Websites

Paul "RCU" McKenney's Journal

Paul is the guy behind Linux kernel's RCU. Don't miss his "Is Parallel Programming Hard, And, If So, What Can You Do About It?" electronic book.

David Dice's Weblog

Announces of new research papers and insightful blogs.

Lockless

A collection of detailed articles on such things as implementation of plain and reader-writer mutex, queues, events, futexes, condition variables, as well as some C tips and tricks. Recommended.

Doug "Fork/Join" Lea Home Page

Java Memory Model, Java Fork/Join, Java Concurrent Collections. It is there.

Ulrich Drepper's Livejournal

Don't know who is Ulrich Drepper? Then go and read "What every programmer should know about memory" (9 parts).

Dr. Cliff Click's Blog

Detailed blogs about synchronization, hardware transactional memory, implementation of JVM features and so on.

Joe Duffy's Weblog

Concurrency, memory models issues, guidelines and tips in .NET/C# context.

Practical lockfree data structures

Home page of a research group at the University of Cambridge.

High-Performance Synchronization

Home page of a research group at the University of Rochester.

Scalable Synchronization Research Group

Home page of a research group at Sun Labs at Oracle.

Philippas Tsigas: Publications

Maged Michael: Selected Publications

Hans J. Boehm Homepage

Maurice Herlihy's Publications

Data-Race (in Russian)

Articles on synchronization algorithms, memory fences, safe memory reclamation, etc.

Intel Guide for Developing Multithreaded Applications

Covers parallel computing basics, typical pitfalls and Intel library and tooling support.

Chasing state of the art

Java synchronization algorithms.

Articles

LINUX KERNEL MEMORY BARRIERS

Intel® 64 and IA-32 ArchitecturesSoftware Developer’s Manual (8.2.2 Memory Ordering in P6 and More Recent Processor Families).

Standard for ProgrammingLanguage C++ (1.10 Multi-threaded executions and data races; 29 Atomic operations library).

Source Code To Study

AppCore

Includes SPSC queue, stack, eventcount, reader-writer spinlock, SMR as well as some implementation of atomic operations and memory fences. C. From the comp.programming.threads rock star Chris "SenderX" Thomasson.

Atomic-Ptr-Plus

Includes strongly thread-safe reference counting, fastsmr (SMR+RCU), eventcount, fast condition variable. C/C++. From Joseph Seigh who taught me a lot in the field.

Concurrent Building Blocks

Includes a LOT of concurrent containers for C++ and Java.

Liblfds

Queue, ring buffer, list, stack in C.

Research Papers

Lockfree Linked Lists and Skip Lists (pdf)

Split-Ordered Lists: Lockfree Extensible Hash Tables (ACM, slides). Very interesting lockfree hash table. It uses recursive split-ordering technique. Works on top of any singly linked list. Requires only single word CAS. Requires some kind of PDR. Includes full source and implementation of Michael's lockfree list.

Fast and Lockfree Concurrent Priority Queues for Multi-Thread Systems (pdf). Requires only single word CAS. Requires some kind of PDR. Includes full source.

An Optimistic Approach to Lockfree FIFO Queues (pdf). Requires only single word CAS. Requires some kind of PDR. Includes full source.

A Scalable Lockfree Stack Algorithm (pdf). Uses very interesting trick - elimination-backoff. Intended for very high load on multiprocessor/multicore system.Requires only single word CAS. Requires some kind of PDR. Includes full source.

Lockfree Techniques for Concurrent Access to Shared Objects (pdf). LIFO and FIFO stack implementations. Requires double word CAS. Includes source.

Non-Blocking Algorithms and Preemption-Safe Locking on Multiprogrammed Shared Memory Multiprocessors (pdf).

Obstruction-Free Synchronization: Double-Ended Queues as an Example (pdf). Introduction of obstruction-free synchronization. Very interesting. Requires only single word CAS. Includes full source.

Safe Memory Reclamation for Dynamic Lockfree Objects Using Atomic Reads and Writes (pdf). The so-called SMR (Safe Memory Reclamation) or hazard-pointers. Must read.

Efficient Almost Waitfree Parallel Accessible Dynamic Hash-tables (pdf)

A Pragmatic Implementation of Non-Blocking Linked-Lists (pdf). The so-called Harris list algorithm. Requires only single word CAS. Requires some kind of PDR. Includes source.

Non-blocking hash-tables with open addressing (pdf).

A Provably Correct Scalable Concurrent Skip List (pdf).

A Lazy Concurrent List-Based Set Algorithm (pdf). Upgrade for Michael’s lockfree set algorithm. Very useful.

Non-blocking Memory Management Support for Dynamic-Sized Data Structures (pdf). The so-called ROP (Repeat Offender Problem), PTB (Pass The Buck). SMR analog. Must read.

Bringing Practical Lockfree Synchronization to 64Bit Applications (pdf). LL/SC emulated with CAS. PDR included. Source included. Fullload of CASes per operation included.

Non-blocking k-compare-single-swap (pdf).

MultiLane : a concurrent blocking multiset (pdf).

Cache-Oblivious Algorithms

The idea behind cache-oblivious algorithms is efficient usage of processor caches and reduction of memory bandwidth requirements. Both things are equally important for single-threaded algorithms, but especially crucial for parallel algorithms, because available memory bandwidth is usually shared between hardware threads and frequently becomes a bottleneck for scalability. The name may be somewhat misleading, because they are not oblivious of the fact of presence of caches (just the opposite), they are oblivious of particular cache hierarchy and cache parameters and make efficient use of whatever cache hierarchy/parameters.

In order to understand what it's all about, let's consider a typical cache structure in modern computers:

Yes, in some sense memory is no more than a cache for slow disks (while disks are caches for network or whatever). Each lower level is more expensive and thus has lower capacity, however it's also faster and in particular has significantly lower access latency. L1 cache typically has latency of a few processor cycles, and at large each subsequent level has roughly order of magnitude larger access latency.

There is an another dimension in the structure - some caches are private to cores, while others are shared between several cores. There is usually an L1 cache (and potentially L2) per each core in modern processors. While L3 cache currently is usually shared between all cores in a processor.

So, without loss of generality let's consider a bit simpler structure:

Here I use terms "cache" and "memory" in a generalized sense, they may represent real L3 cache and memory, or L1 cache and L2 cache, or memory and disk and so on (in reality the scheme is actually applied several times recursively). So, we assume that "cache" is fast and private, while "memory" is slow and shared, and hereinafter we will analyze and optimize accesses to slow shared memory.

Now let's consider the following problem. We have an array of N elements, and want to apply a pairwise predicate to each possible pair of elements:

struct item_t

{

uint64_t x;

uint64_t y;

};

bool predicate(item_t const* i1, item_t const* i2)

{

return ((i1->x + i2->y) * i2->x == (i1->y + i2->x) * i2->y);

}

std::vector<item_t> data (N);

The straightforward way to accomplish the task is to use doubly nested loops, and the straightforward way to parallelize it is to put "#pragma omp parallel for" over the outer loop:

size_t kernel(item_t const* begin1, item_t const* end1,

item_t const* begin2, item_t const* end2)

{

size_t count = 0;

for (item_t const* pos1 = begin1; pos1 != end1; pos1 += 1)

{

for (item_t const* pos2 = begin2; pos2 != end2; pos2 += 1)

{

if (predicate(pos1, pos2))

count += 1;

}

}

return count;

}

size_t calculate_straightforward_parallel(item_t const* begin, size_t count,

unsigned thread_count)

{

size_t res = 0;

pragma omp parallel for reduction(+:res) num_threads(thread_count)

for (int i = 0; i < (int)count; i += 1)

res += kernel(begin + i, begin + i + 1, begin, begin + count);

return res;

}

Let's analyze number of memory transfers MT(N) between memory and cache. It's quite evident that MT(N)=(N2/B), where B - is size of the block used for transfers (cache line size), that is, we are reloading whole array on each iteration of the inner loop (I assume that data do not fit into cache entirely). So, is it good or not? If we compare it to computational complexity O(N2), we may conclude that it is not all that bad. In the end we are doing O(1/B) memory transfers per unit of computations, that is, we perfectly exploit spatial locality - once a cache line is loaded we use all data contained in it.

Let's take a look at the performance graph on a 4 processors x 4 cores AMD machine (dataset size is 150K elements):

As can be seen, scalability beyond 3 threads is mediocre, and no scalability beyond 9 threads. What is the reason? The reason is that all threads constantly access memory which is a shared resource (read - potential bottleneck). Indeed, each thread must do a memory transfer each B computations.

So, what we've missed during design of our algorithm? We've missed possibility of data reuse in cache based on temporal locality. That is, once we've loaded some data into cache we want do as much computations on it as possible (ideally, all). And here cache-oblivious algorithms kick into action.

Cache-oblivious algorithms work by recursively dividing a problem's dataset into smaller parts and then doing as much computations of each part as possible. Eventually subproblem dataset fits into cache, and we can do significant amount of computations on it without accessing memory:

Note that we don't need to know exact cache hierarchy/parameters for it to work. We just recursively divide a dataset, and it inevitably eventually fits into L3 cache, then into L2 and then into L1. Also note that when we've done with a part that fits into L1, we need to load a new part into L1, but the load is satisfied from L2 rather than from memory (and the same for L2). So such recursive division automatically optimally exploits whatever cache hierarchy we have.

Now, let's apply the idea to our pairwise predicate problem and see what performance/scalability we will achieve.

Cache-Oblivious Algorithms: Implementation

So, how to apply cache-oblivious recursive division to our pairwise predicate problem?

We divide our dataset into 2 equal parts, and then recursively proceed with 4 subproblems: application of a predicate to elements from parts (I, I), (I, II), (II, I) and (II, II):

And so on recursively. Note that "upper" and "lower" datasets on the picture are different in the general case (consider the case when we recursively proceed with parts (I, II)).

Generally we do no need to do recursive decomposition down to the bitter end of 1 element partitions. We may stop the recursion once subproblem dataset size guaranteedly fits into the lowest level cache that we want to account for. And then we can reuse our straightforward computational kernel which is potentially highly optimized (with vector SSE instructions, for example).

Let's put it all together into the code; for parallelization I use Cilk Plus technology here (note that recursive decomposition plays very nicely with parallelization - we can execute each subproblem in parallel):

size_t calculate_recursive_parallel(item_t const* begin1, size_t count1,

item_t const* begin2, size_t count2)

{

if (count1 + count2 > 256)

{

size_t res1 = _Cilk_spawn calculate_recursive_parallel

(begin1, count1/2,

begin2, count2/2);

size_t res2 = _Cilk_spawn calculate_recursive_parallel

(begin1, count1/2,

begin2 + count2/2, count2 - count2/2);

size_t res3 = _Cilk_spawn calculate_recursive_parallel

(begin1 + count1/2, count1 - count1/2,

begin2 + count2/2, count2 - count2/2);

size_t res4 = _Cilk_spawn calculate_recursive_parallel

(begin1 + count1/2, count1 - count1/2,

begin2, count2/2);

_Cilk_sync;

return res1 + res2 + res3 + res4;

}

else

{

return kernel(begin1, begin1 + count1, begin2, begin2 + count2);

}

}

Yes, so many words but the code is that simple. Now let's analyze number of memory transfers MT for this algorithm. Main recursive relationship is MT(N)=4*MT(N/2), and we stop recursion when data fits into cache, that is, MT(C/2)=C/B (where C is cache size expressed in cache lines, B is cache line size, and C is divided by 2 because we need to fit 2 arrays into cache) (note that we stop the recursion only in the analysis of MT, computations proceed further, but it's irrelevant here because we don't do any memory accesses starting from that point). My math shows that the solution is MT(N)=O(N2/CB). That is, we reduce amount of memory access by C (which is actually quite large constant, for 64B cache line size and 64KB L1 cache C=1K cache lines, and for 6MB L3 cache C=96K cache lines) as compared to the straightforward algorithm. So now we are doing one memory access per only CB computations.

Let's take a look at the performance graph in the same setup:

As can be seen, cache-oblivious version is not only faster on single thread, it also shows perfect linear scalability (because memory access bottleneck is eliminated).

I've showed how to construct the cache-oblivious algorithm for the simple each-to-each O(N2) problem. It's not always that easy, however, the general pattern of recursive decomposition always holds. For example, below is a hint of how you may approach matrix multiplication in a cache-oblivious way:

Note, for it to work optimally you need to layout data in a recursive way as well so that it follows recursive algorithm structure:

Hope now you get the overall idea. You may also watch the following MIT OpenCourseware lectures on the topic:

Concurrent Skip List

[This is my write-up for Intel Threading Challenge 2010. You may download the code for Microsoft Visual C++ at the bottom of the page]

Problem Statement

Write an implementation of a skip list data structure that is thread-safe for searching and insertion of key-value pairs.

A skip list is a randomized variant of an ordered linked list with many parallel lists through the data held in the list. When searching for a position in a skip list--to either insert a new key-value item, delete an item, or find a previously inserted item--parallel lists at higher levels skip over large numbers of items. Searching begins at the highest level until a key greater than the one being searched for is encountered. The search shifts to progressively lower levels of parallel lists until the desired location is found. A new item is added by randomly selecting a level, then inserting it in order on the lists for that and all lower levels. With enough levels, searching is O(log n).

To test the correctness of a skip list implementation, write an application that constructs an endgame dictionary held within a skip list. An endgame dictionary is a collection of legal game positions and the sequence of moves for one player to win the game.

The game for which you need to construct an endgame dictionary is known as QuARI. The application must generate every possible starting configuration and generate every possible legal position that can be reached from any given starting configuration and which player will ultimately win from optimal play. The collection of legal generated positions with a notation of which player will win shall make up the endgame dictionary. Once the dictionary is completely constructed, the application will read possible board positions from a file and print out which player (O or X) will win from the given position. If any input positions are unreachable from any starting configuration, this should fact will be output instead of a winning player.

Move on to Scalability Prerequisites

Scalability Prerequisites

Creation of efficient scalable concurrent data structures is a kind of black magic. There is no recipes for that. What we should do is carefully analyze usage patterns for a data structure, and then try to satisfy all user requirements and scalability prerequisites with all possible means.

So what are the scalability prerequisites?

First, no mutexes on fast-paths ever (for slow-paths they are Ok, and even recommended because of the usage simplicity). There are several problems with mutexes. Mutexes limit and sacrifice concurrency to provide simplicity (anti-threads, sort of). Then, they provoke write-sharing (cache-coherence traffic) on every operation (even otherwise read-only). So, they just does not scale, forget about them.

Second, logically read-only operations must be implemented as a physically read-only operations. So, what does it mean? During logically read-only operation one should not do any single write to a shared memory location. Note that writes may be hidden inside of some component, in particular most of the reader-writer mutexes do writes to internal state in read_lock()/read_unlock(), such writes are no less harmful. Writes to a shared state provoke cache-coherence traffic, large amounts of which quickly brings any concurrent system to it's knees.

Due to specifics of implementation of cache-coherence in modern concurrent hardware (see MOESI protocol), reads to a shared state have 100% scalability (i.e. any number of threads can read from a memory location simultaneously); while writes to a shared state have zero scalability (i.e. at most 1 thread can write to a memory location at any given moment in time).

Third, no writes to a centralized shared state on fast-paths. Writes to a shared state are generally unavoidable for most concurrent data structures. However we can distinguish 4 kinds of a shared state for our needs:

	
	Mostly private state. A statistics counter held in thread-local storage is a good example. Such counter is frequently written by an owner thread, and very infrequently read by some other thread. This kind of a shared state generally is of no danger for scalability.

	Mostly read-only state. That's a state with a very high read-to-write ratio (some real-world data-structures actually have read-to-write ratio of 10^7 and higher). Such state also is of no danger for scalability.

	Decentralized shared state. That's a shared state which is frequently written to, but is physically distributed. A good example is a hash map with an array of independent buckets. When threads concurrently work with such data structure their activity is physically scattered across the array. And consequently collisions during accesses to a memory location are less frequent. This kind of shared state may or may not represent a danger for scalability depending on distribution factor, number of threads, access patterns and other details.

	Centralized shared state. That's a shared state which is frequently written to, and is physically centralized. A typical example is a counter of elements in a container, which is mutated on every insert and remove operation. That's a scalability killer number one, there is no way to make it scalable. A typical mistake is to maintain such a state with atomic RMW (read-modify-write) operations (InterlockedXXX(), __builtin_sync_XXX(), atomic_XXX()), and think that since there is no mutexes, they should be scalable. It does not work that way, just say no to a centralized shared state.

Fourth, be aware of false sharing. Due to performance reasons cache-coherence protocols work with whole cache lines, rather than with separate bytes, words or C-language variables. I.e if two variables are contained within a single cache line, for the hardware they look like a single variable with all implications on scalability. So everything said above must be actually extended from distinct memory locations to cache lines. Size of a cache-line is architecture dependent, there are/was architectures with cache line sizes from 16 bytes to 4 kilobytes. However for modern Intel x86 processors (IA-32, Intel 64) cache-line size is fixed to 64 bytes, i.e. 16 consecutive words for IA-32 and 8 consecutive words for Intel 64.

Fifth, atomic RMW operations have some fixed associated costs. For modern Intel x86 processors cost of a single atomic RMW operation (LOCK prefixed instruction) is some 40 cycles (depends on a particular model, and steadily decreases). The cost comes mostly from frequently-unneeded embed full memory fence (so when Intel will separate atomicity and memory ordering, you may cross out this rule). However, the cost is fixed and does not affect scalability, so is far less important than above-outlined scalability-affecting points.

Of course, all well-known single-threaded optimization rules are still applicable too. So we may include into the fifth point also algorithmic optimality and general implementation quality.

If we summarize we get the following scalability mantra:

The most important aggregate metric for a concurrent data structure is a mean number of cache line transfers between threads per operation. All possible means must be employed to reduce the value as much as possible.

That's “why” and “what” need to be achieved. Compliance with the above guidelines ensures linear scalability if possible, and just maximum possible scalability otherwise. It's worth noting that some data structures inherently can't be implemented with the linear scalability, for example producer-consumer queue with the strict FIFO ordering requirement (it's 'strict FIFO ordering' part that is problematic, because it inherently requires communication between threads on every enqueue operation). Fortunately, a concurrent skip list is not one of them.

Move on to Skip List Design

Skip List Design

So, let's start with the skip list.

The skip list has only one use case – invocation of find_or_insert() function for a game state, expected ratio of find-to-insert is above 1 (i.e. there will be a fair amount of attempts to insert already present state). An attempt to insert an already present item is a logically read-only operation, while an attempt to insert an absent item is a logically mutating operation.

No items are removed during concurrent phase. This greatly simplifies our task, especially in a non garbage-collected environment.

Total number of items is large and unknown in advance, so the data structure must be dynamic and adaptive.

Move on to Lockfree Reader Pattern

Lockfree Reader Pattern

Significant amount of the operations are read-only operations (attempts to insert an already present game state), so we must ensure that they are physically read-only in our implementation. A common way to achieve this is the lockfree reader pattern.

The idea of the pattern is to make a data structure consistent and available for reading all the time, regardless of the way of implementation of mutating operations. I.e. mutating operations can be synchronized with each other by means of mutexes, however each mutation operation must have a linearization point with regard to readers, after which the operation take all effects and is completely visible for all readers. This does mean that mutation operations under a mutex still must be implemented with concurrency in mind.

Here is an essence of the pattern by example of a concurrent singly-linked list (C++0x concurrency primitives are used):

struct slist_t

{

struct node_t

{

std::atomic<node_t*> next;

void* data;

};

std::mutex mtx;

std::atomic<node_t*> head;

void insert(node_t* node)

{

// no concurrent mutators for simplicity

mtx.lock();

// find previous and next nodes

node_t* prev = find_prev_node(node);

node_t* next = prev->next.load(std::memory_order_relaxed);

node->next.store(next, std::memory_order_relaxed);

// serialization point wrt readers

// during this operation the list atomically proceeds

// from one state to another

// (to the one with the node inserted)

prev->next.store(node, std::memory_order_release);

mtx.unlock();

}

void foreach(void (*func)(node_t*))

{

// lockfree reading

// contains no heavy synchronization

// because writers take care of consistency

node_t* node = head.load(std::memory_order_consume);

while (node)

{

func(node);

node = node->next.load(std::memory_order_consume);

}

}

};

The fact that there is no concurrent remove operations greatly simplifies the implementation. If there are concurrent remove operations, then some form of PDR (Partial copy-on-write Deferred Reclamation) must be employed in order to ensure that readers can read/traverse a data structure regardless of concurrently removing nodes.

Move on to Lockfree Insert Operation

Lockfree Insert Operation

Now we need to deal with actual inserts somehow. The best we can afford (in terms of scalability) is a lockfree algorithm. The algorithm for ordered singly-linked list insertion is well-known, and takes 1 CAS operation in the best (and average) case (note that the function takes as parameters hints for previous and next nodes, which are discovered during preceding searching) (C++0x synchronization primitives are used):

/** ordered singly-linked list insert

* @prev hint for the previous element

* discovered by a find operation

* it's key is smaller than inserting key

* @next hint for the next element

* discovered by a find operation

* it's key is larger than inserting key

* @node the node to insert

* @return true if inserted

* false if the key is already present in the list

*/

bool slist_insert(node_t* prev, node_t* next, node_t* node)

{

for (;;)

{

// try to insert the node with CAS operation

node->next.store(next, memory_order_relaxed);

if (prev->next.compare_exchange_strong(next, node, memory_order_release))

// if the CAS succeeded, the node is inserted

return true;

// otherwise, something has changed,

// and we need to find a new location for the insertion

// (i.e. update 'prev' and 'next')

for (;;)

{

// re-compare the values

int cmp = traits_t::compare(node->item, next->item);

if (cmp > 0)

{

// new 'next' node's key is smaller than the inserting key

// so remember it as a 'prev', and repeat the comparation

prev = next;

next = prev->next.load(memory_order_consume);

if (next == 0)

break;

continue;

}

else if (cmp == 0)

{

// the key is present in the list

return false;

}

else /* (cmp < 0) */

{

// new 'next' node's key is still larger than the inserting key

// so just retry the CAS

break;

}

}

}

}

Move on to Node Count Maintenance

Node Count Maintenance

A level for a new node is usually chosen as follows. Level 0 with probability 2-1, level 1 - with probability 2-2, level 2 - with probability 2-3, and so on. Maximum possible level for a node can be either some predefined constant (for example, 32 or 64), or based on current number of nodes in the skip list N (for example, log2N). The former strategy produces worse results (unreasonably high level can be chosen accidentally), but does not require maintenance of node count. The latter strategy produces more consistent results, but does require maintenance of node count (which is problematic in a concurrent environment). I've chosen the latter strategy.

The straightforward implementation of node count maintenance is to use an atomic fetch-and-add instruction on a centralized counter variable. It destroys scalability, and is not an option.

I use the following decentralized algorithm (trading precision for decentralization, thus scalability). Each thread has a private counter, which is incremented after each insert. The counters are periodically aggregated (summed up) to produce a total node count. Period of aggregation is based on an estimation of when total node count will cross next 2^N mark. Here is the algorithm:

// get private descriptor for the current thread

thread_t* thr = get_thread_desc();

// increment local node counter

size_t const size = thr->size.load(memory_order_relaxed);

thr->size.store(size + 1, memory_order_relaxed);

// check as to whether we need to aggregate counters now

if (size >= thr->next_check)

{

// iterate over all thread descriptors

// and calculate total node count

size_t total_size = 0;

size_t thread_count = 0;

thread_t* desc = thread_list_.load(memory_order_consume);

while (desc)

{

thread_count += 1;

total_size += desc->size.load(memory_order_relaxed);

desc = desc->next;

}

// check as to whether we crossed next 2^N mark or not

size_t new_level = level_.load(memory_order_acquire);

if (total_size > (1ull << new_level) * density_factor)

{

// if yes, update max possible node level

unsigned long idx;

_BitScanReverse64(&idx, total_size);

new_level = idx + 1;

if (new_level >= max_level_count)

new_level = max_level_count - 1;

size_t cmp = level_.load(memory_order_relaxed);

do

{

if (cmp >= new_level)

{

new_level = cmp;

break;

}

}

while (false == level_.compare_exchange_strong(cmp, new_level, memory_order_relaxed));

}

// recalculate when we need to do next aggregation

size_t const remain = (1ull << new_level) * density_factor - total_size;

size_t const size = thr->size.load(memory_order_relaxed);

thr->next_check = size + remain / thread_count / 2;

}

Move on to Memory Allocation

Memory Allocation

There are two problems with memory allocation in the skip list. First is concurrency – a lot of allocation requests from a plurality of threads must proceed in parallel. Second problem is memory consumption – the skip list in intended to consume gigabytes of memory, so it must consume memory optimally. In order to satisfy both requirements I used a per-thread slab allocators. Each thread has it's own private cache of nodes for each level (i.e. with a given number of 'next' pointers), so allocation is very fast, scalable and uses memory optimally (no 'technological' gaps between nodes). Here is a fast-path of the node allocation algorithm:

node_t* alloc_node(thread_t* thr, size_t level, item_t item)

{

void* mem = thr->cache[level];

if (mem)

{

thr->cache[level] = *(void**)mem;

node_t* node = new (mem) node_t (item);

return node;

}

return alloc_node_slow(thr, level, item);

}

The alloc_node_slow() function refills the cache for a given level, and recursively calls alloc_node() (which must succeed this time).

Move on to Parallelization - Problem Analysis

Parallelization - Problem Analysis

Task structure for the problem is represented in the following picture:

For each game state we have two tasks – one game state exploration and one backtracking task. Game state exploration tasks deal with determination of possible moves from a state, and calculation of resulting states. Backtracking tasks deal with calculation of a winning player provided optimal play.

Tasks form a DAG, each task generally has several children, and several parent tasks.

Move on to Scheduling Strategy

Scheduling Strategy

There are 4 main strategies for a fine-grained distributed dynamic task scheduling:

	
	Work-stealing. That's a reactive asynchronous strategy. The essence: when a thread is out work, it randomly chooses a victim thread and asynchronously tries to steal some work from it.

	Work-requesting. That's a reactive synchronous strategy. The essence: when a thread is out of work, it randomly chooses a victim thread and sends a synchronous request to it; the victim receives the request, and sends some work back (if any).

	Work-distribution. That's a proactive synchronous strategy. The essence: during submission of a new work, it's divided and proactively distributed to some threads (idle or lightly loaded).

	Work-balancing. That's a proactive asynchronous strategy. The essence: dedicated thread (or potentially one of the worker threads) periodically collects information about load of all worker thread, then calculates optimal distribution of work, and then re-distributes work among them.

It's worth noting that a scheduler may employ several (or even all of the) above strategies. Reactive strategies (stealing and requesting) deal with inevitable dynamic load imbalance; but usually have very limited local information about a system's state, so make sub-optimal decisions. Proactive strategies (distribution and balancing), on the other hand, have information about a system's state, so make one-shot optimal scheduling decisions; but unable to cope with inevitable dynamic load imbalance.

A scheduler must employ at least one of the reactive strategies in order to cope with continuous and inevitable dynamic load imbalance, and optionally include one or both proactive strategies in order to cut down stealing/requesting costs. So, the general recipe for a scheduler is:

SCHEDULER = (STEALING ^ REQUESTING) [+DISTRIBUTION] [+BALANCING]

Move on to Work-Stealing vs. Work-Requesting

Work-Stealing vs. Work-Requesting

So we have to choose between work-stealing and work-requesting. Work-stealing has a serious advantage over work-requesting due to it's asynchronous nature: a thief thread is able to get some work, even if a victim thread is busy processing a user task or even de-scheduled by an OS. With work-requesting a thief thread is able to get some work only if a victim thread condescends to send it (which it is just unable to do if it is de-scheduled by an OS). However, in our case it's not a problem, because tasks are small and limited in size, plus we are not going to over-subscribe processors with threads.

There are also 2 problems with work-stealing due to it's asynchronous nature. First, it inherently incurs some observable per-task overhead, because every pop operation from a thread's work deque must be synchronized with a potential asynchronous steal operation from another thread. Stealing is rare, but one still has to pay that price on every pop operation. The price is at least a single store-load style memory fence (MFENCE instruction for x86 architecture), or a single atomic RMW operation (LOСK prefixed instruction on x86). Here is an illustration of the problem:

Work-requesting is free of the problem. Task deque is completely local to a thread and requires no synchronization.

The second problem has similar nature and relates to a join phase of parallel algorithms (game state backtracking in our case). Traditional handling of task completion involves decrement of a pending child counter of a parent task. Due to asynchronous nature of work-stealing, the decrement has to be synchronized with other potential concurrent decrement operations. Here is an illustration of the problem:

Work-requesting is free of the problem. During execution of work-requesting protocol a victim thread can mark a parent task with a 'has_stolen_children' flag, and synchronization will be used only for such tasks. While great bulk of tasks will proceed without any synchronization.

Due to afore-mentioned problems I've chosen a work-requesting protocol for task scheduling. Basically, it allows us to cut 2 atomic RMW operations per task.

Move on to Work-Distribution and Work-Balancing

Work-Distribution and Work-Balancing

Now, we must decide as to whether to use work-distribution and/or balancing in addition to work-requesting. Work-balancing is too cumbersome to implement and my educated guess is that it's not going to provide any significant speedup (it's more suitable for work DAGs with no “busy leaves” property).

Work distribution is a different story. It's easier to implement, and may provide some speedup. I decided to implement work distribution only on initial stage. Namely, all initial game states are evenly distributed across all worker threads in a round-robin fashion. So each worker thread has quite a lot of work to begin with, and work-requesting comes into play towards an end of computation.

Move on to Scheduler Algorithm

Scheduler Algorithm

Here is a bit simplified code of my scheduler (some functions are omitted for brevity):

class worker_thread

{

// global index of current thread

size_t my_index;

// local tasks

deque<task_t> tasks;

// 1-element queue for work requests from other threads

atomic<size_t> steal_req;

// 1-element queue for work request acknowledges from other threads

atomic<size_t> steal_ack;

// main thread loop

void loop()

{

for (;;)

{

// while we have local work process it

while (tasks.size() != 0)

{

// pop task in LIFO order

task_t task = tasks.back();

tasks.pop_back();

// user processing

execute(task);

// check for steal requests from other threads

if (steal_req.load(memory_order_relaxed) != no_requests)

process_work_request();

}

// try to get some work from other threads

if (false == send_steal_request())

break;

}

}

void process_work_request()

{

// get thief descriptor

size_t thief_idx = steal_req.load(memory_order_relaxed);

worker_thread&; thief = get_thread(thief_idx);

if (tasks.size())

{

// pop task in FIFO order

task_t task = tasks.back();

tasks.pop_back();

// synchronous user processing

steal(task);

// give it to the thift

thief.tasks.push_back(task);

}

// notify the thief that the operation is completed

thief.steal_ack.store(1, memory_order_release);

}

bool send_steal_request()

{

for (;;)

{

// choose a victim

size_t victim_idx = choose_randomly();

worker_thread&; victim = get_thread(victim_idx);

// send a request to it (if it's not busy processing another request)

steal_ack.store(0, memory_order_relaxed);

size_t cmp = victim.steal_req.load(memory_order_relaxed);

for (;;)

{

if (cmp != (size_t)-1)

break;

if (victim.steal_req.compare_exchange_strong(cmp, my_index, memory_order_acq_rel))

break;

}

// request is sent?

if (cmp == no_requests)

{

// wait for ack

while (steal_ack.load(memory_order_acquire) == 0)

Sleep(0);

// check as to whether we got some work or not

if (tasks.size())

return true;

}

// termination condition

if (no_work_in_the_system())

return false;

}

}

};

Move on to Performance Result

Performance Result

For performance measurements and scalability estimation I used the Intel Parallel Universe service, which features two Intel Xeon X5570 packages (4 HT cores each, 16 hardware threads total). Here is summary report produced by the service for 6x5 game board:

As it can be seen, the program shows very good scalability of 13.38 on 16 hardware threads (8 physical cores). Speedup obtained due to HT technology (difference between 8 threads and 16 threads) is 1.86. That's quite high speedup for HT technology (reference numbers are 1.2-1.4), and it may be explained by a high amount of cache misses (linked list traversal inherently produces high amount of cache misses), which are efficiently neutralized by HT technology (pipeline stalls of two HT sibling threads are interleaved, so that execution units are busy most of the time).

The service also produces a more detailed report for The Intel Parallel Amplifier:

As it can be seen, concurrency is perfect – all bars are completely green (i.e. 16 threads are runnable all the time). ~50% of the execution time is consumed by the concurrent_skiplist::insert() function, which is completely expected. ~30% of the execution time is consumed by local state caching and filtration (remember_state()). And remaining 20% is consumed by game state exploration logic.

In general, I consider the concurrent skip list implementation and parallelization strategy as successful.

[You can download full source code on the first page]

Line Segment Intersection Problem

[This is my write-up for Intel Threading Challenge 2009. You may download the code for Microsoft Visual C++ at the bottom of the page]

Line Segment Intersection Problem

1. Problem Statement

Write a threaded code to find pairs of input line segments that intersect within three-dimensional space. Line segments are defined by 6 integers representing the two (x,y,z) endpoints.

2. Single-threaded Implementation

2.1. Algorithm outline

As a base algorithm I choose simple exhaustion of segment pairs:

void solve_segment_intersection(std::vector<segment_t> const& segments, std::vector<intersection_t>& results)

{

for (size_t i = 0; i != segments.size(); i += 1)

{

for (size_t j = i + 1; j != segments.size(); j += 1)

{

if (is_intersect(segments[i], segments[j]))

results.push_back(intersection_t(segments[i], segments[j]));

}

}

}

Computational complexity of such algorithm is O(N^2 / 2). It's quite high complexity, and there are known algorithms with complexity O((N+K)*logN) [1] and even O(N*logN + K) [2] (K - number of intersections). However I decide to not implement these theoretically more efficient algorithms because of the significantly higher implementation complexity and the fact that they are much harder to parallelize efficiently and less amenable to low-level optimizations such as vectorization, branch elimination, cache-conscious memory access patterns, etc.

In order to reduce computational complexity I apply sorting of segments by X coordinate with following bounding of exhaustion. If segments are sorted by X1 coordinate (it's assumed that X1 <= X2), then once we encounter segment with X1 greater then X2 coordinate of original segment we may not consider all subsequent segments (they are not overlapping with original segment by X coordinate):

void solve_segment_intersection(std::vector<segment_t>& segments, std::vector<intersection_t>& results)

{

 std::sort(segments.begin(), segments.end(), sort_by_x1);

for (size_t i = 0; i != segments.size(); i += 1)

{

for (size_t j = i + 1; j != segments.size(); j += 1)

{

 if (segments[j].x1 > segments[i].x2) break;

if (is_intersect(segments[i], segments[j]))

results.push_back(intersection_t(segments[i], segments[j]));

}

}

}

Now computational complexity is reduced to O(N*M), where M is some constant dependent on input data ("how many segments are overlapping by X coordinate"). So in best case complexity is O(N) now (if no segments are overlapping). In worst case complexity is still O(N^2 / 2).

2.2. Bounding Box

Precise calculation of is_intersect predicate is computationally hard (contains considerable amount of multiplication operations, conditional branching, etc). Bounding box is a simple optimization which determines evidently non intersecting segments. Bounding box optimization is based on the following observation - if 2 segments are intersecting in 3D space then their projections to coordinate axises are intersecting by pairs too. Thus, if projections to at least one axis are not intersecting then segments itself are not intersecting in 3D space:

If ((s1.x2 < s2.x1) or (s2.x2 < s1.x1) or

(s1.y2 < s2.y1) or (s2.y2 < s1.y1) or

(s1.z2 < s2.z1) or (s2.z2 < s1.z1))

then segments s1 and s2 are not intersecting.

(it's assumed that x1 <= x2, y1 <= y2, z1 <= z2)

Experimentation shows that for randomly generated data bounding box technique detects quite significant amount of evidently non intersecting segments.

Here is the code:

void solve_segment_intersection(std::vector<segment_t>& segments, std::vector<intersection_t>& results)

{

std::sort(segments.begin(), segments.end(), sort_by_x1);

for (size_t i = 0; i != segments.size(); i += 1)

{

for (size_t j = i + 1; j != segments.size(); j += 4) // note that increment is 4

{

if (segments[j].x1 > segments[i].x2)

break;

 int max_of_mins_y = std::max(segments[i].y1, segments[j].y1);

 int min_of_maxs_y = std::min(segments[i].y2, segments[j].y2);

 if (max_of_mins_y > min_of_maxs_y)

 // evidently no intersection

 continue;

 int max_of_mins_z = std::max(segments[i].z1, segments[j].z1);

 int min_of_maxs_z = std::min(segments[i].z2, segments[j].z2);

 if (max_of_mins_z > min_of_maxs_z)

 // evidently no intersection

 continue;

// only not calculate precise predicate

if (is_intersect(segments[i], segments[j]))

results.push_back(intersection_t(segments[i], segments[j]));

}

}

}

2.3. SSE To The Rescue

Bounding box verification can be further optimized with SSE vector operations [3]. First gain comes from the fact that SSE vector operations can process up to 4 pairs of 32-bit integers at a time. Second gain comes from then fact that SSE extensions contain powerful operations that can find minimum/maximum of 2 values in streamlined fashion (w/o conditional branching, just single machine instruction).

Note that in order to apply vector operations data structures have to be converted from AoS (array of structures) representation to SoA (structure of arrays) representation, i.e. following straightforward representation of array of segments:

struct segment_t

{

int x1, x2, y1, y2, z1, z2;

};

typedef std::vector<segment_t> segments_t;

have to be converted to following SoA representation:

struct segments_t;

{

std::vector<int> x1, x2, y1, y2, z1, z2;

};

Normal

0

false

false

false

MicrosoftInternetExplorer4

After such conversion we may use SSE vector operations. Here is a bit simplified code (it uses Intel C++ compiler intrinsics):

void solve_segment_intersection(std::vector<segment_t>& segments, std::vector<intersection_t>& results)

{

std::sort(segments.begin(), segments.end(), sort_by_x1);

segments_t soa_segments; // population of soa_segments is omitted

for (size_t i = 0; i != segments.size(); i += 1)

{

// load y and z coords of first segment

__m128i s1_min_y_v = _mm_set1_epi32(soa_segments.y1[i]);

__m128i s1_max_y_v = _mm_set1_epi32(soa_segments.y2[i]);

__m128i s1_min_z_v = _mm_set1_epi32(soa_segments.z1[i]);

__m128i s1_max_z_v = _mm_set1_epi32(soa_segments.z2[i]);

for (size_t j = i + 1; j != segments.size(); j += 4) // note that increment is 4

{

if (segments[j].x1 > segments[i].x2)

break;

// load y and z coords of second segment

__m128i s2_min_y_v = _mm_load_si128((__m128i*)&soa_segments.y1[j]);

__m128i s2_max_y_v = _mm_load_si128((__m128i*)&soa_segments.y2[j]);

__m128i s2_min_z_v = _mm_load_si128((__m128i*)&soa_segments.z1[j]);

__m128i s2_max_z_v = _mm_load_si128((__m128i*)&soa_segments.z2[j]);

// find bounding box projection to y axis

__m128i max_of_mins_y = _mm_max_epi32(s1_min_y_v, s2_min_y_v);

__m128i min_of_maxs_y = _mm_max_epi32(s1_max_y_v, s2_max_y_v);

// find bounding box projection to z axis

__m128i max_of_mins_z = _mm_max_epi32(s1_min_z_v, s2_min_z_v);

__m128i min_of_maxs_z = _mm_max_epi32(s1_max_z_v, s2_max_z_v);

// check whether segments overlap by y and z coords

__m128i cmp_y = _mm_cmpgt_epi32(max_of_mins_y, min_of_maxs_y);

__m128i cmp_z = _mm_cmpgt_epi32(max_of_mins_z, min_of_maxs_z);

// aggregate results for y and z axises

__m128i cmp_yz = _mm_or_si128(cmp_y, cmp_z);

if (_mm_test_all_ones(cmp_yz))

// neither of these segments are intersecting

continue;

if (0 == _mm_extract_epi32(cmp_yz, 0))

// bounding box says that these segments are possibly intersecting

// so make precise verification

if (is_intersect(segments[i], segments[j+0]))

results.push_back(intersection_t(segments[i], segments[j+0]));

// analogously for other segments

if (0 == _mm_extract_epi32(cmp_yz, 1) && is_intersect(segments[i], segments[j+1]))

results.push_back(intersection_t(segments[i], segments[j+1]));

if (0 == _mm_extract_epi32(cmp_yz, 2) && is_intersect(segments[i], segments[j+2]))

results.push_back(intersection_t(segments[i], segments[j+2]));

if (0 == _mm_extract_epi32(cmp_yz, 3) && is_intersect(segments[i], segments[j+3]))

results.push_back(intersection_t(segments[i], segments[j+3]));

}

}

}

Note that there is only a handful of lightweight instructions (no multiplications, divisions, branching) before final _mm_test_all_ones() test which throws away 4 segments at a time (assumed to be common case for randomly generated data). And only if the test fails we consider each pair of segments individually. Is_intersecting predicate will be computed only for segment pairs for which bounding box says that segments are possibly intersecting.

3. Parallelization

3.1. Parallelization Outline

As a tool for parallelization I choose Intel Threading Building Blocks (TBB) library which provides handy and flexible abstraction of lightweight tasks. Here is the high-level scheme of parallelization (each rectangle represents a task, rectangles situated on the same horizontal level may be executed in parallel):

3.2. Start Phase

On the start phase I analyze command line parameters, read number of segments, decide on number of worker threads and start input tasks.

Number of worker threads is crucial aspect for performance. Too high number of threads will introduce unjustified latency for small inputs, because of the overheads related to worker thread starting/stopping, work distribution, aggregation of results and synchronization. I've made a number of tests and set up minimum number of segments per worker thread to 1000. I.e. if there is less than 1000 segments all work will be performed by single thread, if there is 1000-2000 segments all work will be performed by 2 worker threads, and so on. I choose number 1000 based on the following equation. Execution time for 1000 segments for 1 thread is roughly equal to that for 2 threads, i.e. at this point parallelization related speedup starts outweighing parallelization related overheads.

Maximum number of worker threads is bounded by number of available execution units (processors, cores, HT threads). Higher number of threads is senseless for CPU-bound tasks (as opposed to IO-bound tasks), because will only cause additional overheads related to context switching.

3.3. Input Phase

Each input task is supplied with it's own piece of input file (input file is equally partitioned between tasks). First of all input task finds nearest to the piece begin boundary of segment description (using '\r' and '\n' symbols as markers). Then it parses input file until piece end, stores segment descriptions to array and collects some statistics.

3.4. Sort Phase

On sorting phase I just use TBB's standard tbb::parallel_sort() algorithm. As will be seen in the Performance section it achieves linear scalability and provides single-threaded performance similar to that of std::sort() algorithm. So no need to re-invent the wheel.

3.5. Intersection Phase

In order to parallelize intersection testing segment pairs must be somehow partitioned to independent groups. Since we have 2 nested loops - outer "i" loop and inner "j" loop - and all iterations of both loops are independent (no data dependencies between them) we may choose either of them as a source of partitioning. However golden rule of parallelization says:

Choose highest possible level for parallelization.

Parallelization on highest possible level tends to "distribute" threads from each other and give each thread bigger piece of independent work, thus reducing work distribution and synchronization overheads.

Parallelization of outer loop may be infeasible/impossible for some reasons. For example, if there is just too small number of iterations (less than number of threads), or if there are data dependencies between iterations (calculations on i+1 iteration depend on results of i-th iteration). However it's not the case for our problem, so I choose partitioning of outer "i" loop.

Initially I created one task per worker thread and equally divided iteration space among them, however it turns out that this way amount of work per task (thread) may be quite unbalanced. If segments are sorted by X coordinate ascending then first segment must be verified for intersection potentially with all other segments, while last segment must not be verified at all.

In order to overcome this I create larger number of tasks which is determined by the following formula:

number_of_tasks = min(number_of_segments / min_number_of_segments_per_task, number_of_worker_threads * surplus_factor);

min_number_of_segments_per_task is set to 1000 (see section 3.2. above).

surplus_factor is set to 64 and determines number of tasks per worker thread required to achieve sufficiently good load balancing.

3.5. Output Phase

I decide to not parallelize output phase because number of intersections is expected to be small.

However if number of intersections is expected to be very large following parallelization strategy can be applied. Memory mapping of sufficient size is opened for output file. Private buffer able to hold, let's say, 1000 intersections is allocated for every worker thread. Worker threads collect results in these private buffers. When a thread's buffer becomes full, thread reserves a range of output file with single atomic increment operation on file_end_marker variable, and then flushes private buffer to file. When thread finishes work it has to flush it's partially full private buffer to file too. This way each thread will output it's own hot-in-cache results, and output will be evenly distributed and parallelized.

4. Performance

I used 2 different data generation algorithms for performance testing. First algorithm generates large segments with large coordinates domain. Here is the results I got on Intel Core2 Duo P9500 (2.5GHz, 6MB L2 cache, 1GHz memory bus) for 30'000 segments with coordinates randomly generated in the range 0 ... 10^6 (number of intersections is 0):

Second algorithm generates small segments with small coordinates domain. Here is the results I got for 400'000 segments of maximum length 40 (in each direction), all coordinates are in range 0...400 (~13K intersections):

As on can see, parallelized phases achieve nearly linear speedup. There is some fixed deviation from the linear scaling probably caused by thread management, work distribution and synchronization overheads. Execution time of non-parallelized output phase is negligible. So I consider parallelization as successful in whole.

References

[1] Bentley-Ottmann algorithm. http://en.wikipedia.org/wiki/Bentley%E2%80%93Ottmann_algorithm

[2] Linear-Time Algorithms for Geometric Graphs with Sublinearly Many Crossings. http://www.siam.org/proceedings/soda/2009/SODA09_018_eppsteind.pdf

[3] http://en.wikipedia.org/wiki/Streaming_SIMD_Extensions

Multi-list

[This is my write-up for Intel Threading Challenge 2010. You may download the code for Microsoft Visual C++ at the bottom of the page]

Problem Statement

Data Structure Description: To support the computation of the problem described below, implement a thread-safe data structure that implements multiple ordered lists. Lists within the structure are indexed starting at 0 and proceeding up to one less than the number of lists created for the structure. The following base thread-safe functions/methods are to be implemented for the problem described below:

BOOL initialize (int num_lists)

-- Create multi-list structure with num_lists empty lists.

void insert(unsigned int list_num, <T> item)

-- Add item to the end of the list_num list.

BOOL delete (<T> item, unsigned int list_num)

-- Remove the first instance of item on the list_num list. Return TRUE if the item was found and removed, FALSE to indicate the item is not on the list.

BOOL find (<T> item, unsigned int list_num)

-- Determine if there is at least one instance of item on the list_num list. Return TRUE if the item was found, FALSE to indicate the item is not on the list.

BOOL peek (unsigned int list_num, unsigned int position, <T*> item)

-- Return the value of the item in the current position, using ‘1’ as the position of the first item on a non-empty list, from the list_num list. Return TRUE if the list contains at least position elements and the item was returned; FALSE to indicate the list did not contain enough elements.

Problem Description: Write a threaded program to generate and populate a collection of ordered lists using the multi-list structure described above. From the data stored in the lists, compute the rank of each of the integers found in the multi-list structure. The rank of a list item is based on its position within the lists using the following algorithm:

R = 1

do {

All elements at the front of each list are assigned rank R

Remove each instance of rank R items from every list

R++

} until all lists are empty

Input to the program will come from the command line and contain two file names. The first file will hold data to be used to generate the initial data within the multi-list structure and the second will be the file to write out the ranks of all items generated.

List Generation: Use a linear congruential pseudo-random number generator (PRNG) to initially populate the lists. Use the following relation for the PRNG:

X[i+1] = (a*X[i] + b) mod m

…where the initial seed value is X[0] and the results of the relation are fed back as the seed for the next number calculation.

Part of the input to the application will be the 4-tuple (seed, a, b, m). Using the input values, generate multiple 4-tuples that will in turn be used to generate values to be stored on the list within the multi-list structure. The following serial algorithm describes how to use the PRNG function for this purpose.

for (i = 0..NUM_LISTS-1) {

X0[i] = PRNG(&seed, a, b, m);

A[i] = PRNG(&seed, a, b, m);

B[i] = PRNG(&seed, a, b, m);

M[i] = PRNG(&seed, a, b, m);

}

for (i = 0..NUM_LISTS-1) {

if (M[i] != 0) {

for (j = 1..NUM_ITEMS) {

int item = PRNG(&X0[i], A[i], B[i], M[i]);

insert(i, item);

}

}

}

Next page: Multi-list Interface and Implementation

Multi-list Interface and Implementation

Additional Methods

Here is multi-list interface synopsis:

template<typename T>

class concurrent_multilist

{

public:

concurrent_multilist(size_t list_count, size_t list_size_hint);

void insert(size_t list_idx, T value);

bool erase(size_t list_idx, T value);

bool find(size_t list_idx, T value);

bool peek(size_t list_idx, size_t position, T* value);

size_t list_count() const;

size_t list_size(size_t list_idx) const;

};

I've added list_size_hint parameter to the constructor (approved change).

I've added list_count() and list_size(size_t list_idx) methods (approved change).

The only non officially approved change is a slight extension of the peek() method – if the argument 'value' is equal to 0, then the method prefetches the requested element w/o actually returning it (this way a user can declare that she may want the element in the near future). However in this case the method returns 'false', so for unaware user it looks like invalid argument handling and does not affect semantics. Note that the extension produces no visible action (state of the list is not affected, and no information returned to a user).

Multi-list Design

My ranking algorithm uses only insert() and peek() methods, so performance of find() and erase() methods can be sacrificed (however they still need to be correct and thread-safe). What we want to achieve for insert() and peek() methods is virtually zero synchronization overheads, i.e. no atomic RMW operations (LOCK prefixed instructions), no #StoreLoad style memory fences (MFENCE instruction), no write-sharing. Let's call that property atomic-free for short.

Another design consideration is that population phase is evidently memory bandwidth bound, so multi-list must employ the tightest memory layout possible. And the tightest layout possible is evidently an array of values.

Find() method imposes the same requirements (read-only scanning) and implemented in the same way as peek(), so it's not further considered.

Here is a graphical scheme of the multi-list structure layout:

The key to achievement of atomic-free property for fast-paths is the asymmetric reader-writer mutex algorithm (which is invented by me, and based on the prior work by David Dice et al). In short, the asymmetric reader-writer mutex algorithm provides virtually zero overhead synchronization for a plurality of readers at the expense of significantly more expensive writer access. In the scheme it's represented by 'arw_mutex' blocks, part of it contained within list, and another is scattered within per-thread TLS blocks (this distribution is the key to scalability). Algorithm details are a way too involved for this write-up, please refer to the links.

As you may guess, erase() method plays the role of a writer in the asymmetric reader-writer protocol; insert(), peek() and find() are all play the role of readers. Thus, erase() operations are executed completely exclusively, so they do not need any additional synchronization with other methods.

Insert() and peek() methods make heavy use of thread-local data. Insert() method caches insert position (pointer to current superblock) in per-thread/list storage, and uses per-thread caching memory allocator. While peek() method caches current scan position in per-thread/list storage, this is required for efficient scanning of lists.

Insert() and peek() operations are synchronized with each by means of careful memory operation ordering. Namely, insert() method first writes the values, and then moves 'last' pointer of the superblock:

tail_superblock->last[0] = value;

tail_superblock->last += 1; // store-release

While, peek() method first loads 'tail' pointer and then reads the value:

for (T* pos = current_superblock->first;

pos != current_superblock->last; // load-acquire

pos += 1)

{

T value = pos[0];

...

}

This weak form of synchronization has basically no cost on IA-32/Intel64 architectures because of the implicit release/acquire fences associated with each store/load.

Next page: Parallelization

Parallelization

Multi-list population

I've parallelized multi-list population on a list basis, i.e. only 1 thread can populate a list. Population of a single list is basically impossible because of the dependencies in the linear congruental pseudo-random number generation algorithm.

Parallelization is implemented with OpenMP technology:

putenv("KMP_AFFINITY=scatter");

#pragma omp parallel for schedule(guided, 1) num_threads(fill_thread_count)

for (size_t i = 0; i < list_count; i += 1)

fill_list(lists, rnds[i], elem_count, i);

Number of threads employed in population is determined as:

min(number_of_lists, number_of_hardware_threads, number_of_numa_nodes * 4)

There is no sense in employing more threads than there are hardware threads of lists. NUMA related component is the formula deals with memory bandwidth – 4 threads are perfectly able to exhaust node available memory bandwidth.

KMP_AFFINITY=scatter is set because we need to occupy all NUMA nodes (we need their memory bandwidth). Scatter affinity distributes threads as far from each other as possible (refer to Intel OpenMP Thread Affinity Interface for details).

Ranking

Problem analysis reveals quite tight data dependencies between processing of list elements. Namely, processing of i-th element in a list depends on processing of 0..i-1 elements in all other lists. Thus, it's impossible to process lists one-by-one independently of each other (which would be an ideal variant from parallelization point of view). However, what can be processed in parallel is an "i-th slice of a multi-list", i.e. i-th elements in all lists.

So, I've employed a phased algorithm for parallelization. Namely, each worker thread is assigned with a batch of lists. During each phase a thread iterates over the batch, and for each list searches for a first non ranked element and ranks it. All worker thread synchronize on a barrier [[url]] at the end of each phase. If during a phase worker thread detects that some list runs out, then the thread schedules rebalance procedure for the end of the phase. Rebalance procedure redistributes remaining lists evenly among worker threads.

Here is pseudo-code that's executed by worker threads:

for (;;)

{

bool list_removed = false;

for (size_t b = 0; b != my_batch.size(); b += 1)

{

size_t const list_idx = my_batch[b];

// actual processing is omitted for brevity

list_removed |= handle_list(list_idx);

}

if (barrier.wait(thread_idx, list_removed))

{

rebalance_batches();

barrier.restore();

}

if (my_batch.empty())

break;

}

Rebalance procedure is executed only by main thread (thread_idx == 0) iff any of the threads signaled exhaustion of one or more lists. During rebalance all other threads (except main) are parked on the barrier. When main thread finishes with rebalancing, it releases the barrier. This algorithm ensures mutual exclusion for accesses to batches.

Multi-threading is implemented by means of OpenMP, however it's used only to start threads:

putenv("KMP_AFFINITY=compact");

#pragma omp parallel for schedule(static, 1) num_threads(rank_thread_count)

for (int thread_idx = 0; thread_idx < tcount; thread_idx += 1)

rank(..., thread_idx, ...);

KMP_AFFINITY=compact is set because of the frequent synchronization between threads. Compact affinity places threads closer to each other, so that synchronization is less costly (refer to Intel OpenMP Thread Affinity Interface for details).

Next page: Performance Results

Performance Results

For performance testing I used Intel MTL service, which features 64 hardware threads (4 NUMA nodes x 8 cores x 2 HT threads). As input data I used "30000 30000 0 1103515245 12345 9999991", i.e. 30'000 lists each with 30'000 elements (900'000'000 elements total).

Below is the performance graph for the population phase only ('ideal' line represents perfect linear scaling, times are in milliseconds):

Population scales nearly perfectly up to 8 threads (i.e. 2 threads per NUMA node). Maximum performance is achieved with 16 threads. Beyond that point memory subsystem is completely saturated and performance degrades due to thread over-subscription.

Below is the performance graph for the ranking phase only ('ideal' line represents perfect linear scaling, times are in milliseconds):

Ranking scales reasonably good up to 4 threads. Then performance starts degrade due to frequent synchronization between threads (at the end of each phase). The best performance is achieved with 32 threads.

Below is a table with complete execution times for different LIST_COUNT and ELEM_COUNT parameters. Execution times are captured for executions with optimal thread number for each phase (thread number that yield minimal execution time) (execution times are in milliseconds):

For example, for LIST_COUNT=100'000 and ELEM_COUNT=10'000 execution time is 4397 ms, which means that time per single element (insertion and ranking) is below 5 ns.

Radix Sort

[This is my write-up for Intel Threading Challenge 2009. You may download the code for Microsoft Visual C++ at the bottom of the page]

Radix sort is a sorting algorithm that sorts integers by processing individual digits. Because integers can represent strings of characters and specially formatted floating point numbers, radix sort is not limited to integers. Most digital computers internally represent all of their data as electronic representations of binary numbers, so processing the digits of integer representations by groups of binary digit representations is most convenient. Two classifications of radix sorts are least significant digit (LSD) radix sorts and most significant digit (MSD) radix sorts. LSD radix sorts process the integer representations starting from the least significant digit and move towards the most significant digit. MSD radix sorts work the other way around. MSD sorting algorithm has particular application to parallel computing, as each of the subdivisions can be sorted independently of the rest.

Radix sort is not a comparison-based sort, so theoretical limit of O(NlgN) is not applicable. Computational complexity of radix sort is O(NK), where N is the number of values and K is the number of subdivisions. This complexity holds for worst, best and mean cases. Space complexity is O(NK).

Single-Threaded Implementation

Naïve single-threaded implementation of MSD radix sort is quite straightforward:

typedef std::vector<std::vector<byte> > data_t;size_t const byte_values = 256;typedef unsigned char byte;void radix_sort(data_t& data, size_t position = 0){ // recursion stop conditions if (data.size() <= 1 || position == data[0].size()) return; std::vector<data_t> radix (byte_values); // radix split for (size_t i = 0; i != data.size(); ++i) { size_t idx = data[i][position]; radix[idx].push_back(data[i]); } size_t out_pos = 0; for (size_t i = 0; i != byte_values; ++i) { // recursive sort of lesser significant digits radix_sort(radix[i], position + 1); // copyback for (size_t j = 0; j != radix[i].size(); ++j, ++out_pos) { data[out_pos] = radix[i][j]; } }}

Parallelization

I use 2 types of parallelization. First type is the parallelization of the radix split (intra-radix parallelization), this parallelization is especially useful for initial radix split (most significant digit). Input data is split into several parts (fork), each processor picks up a part and makes radix split (parallel processing). When all parts have split partial radix arrays are aggregated (join) and directed to the next level of recursion. This parallelization may help also with sorting of not-so-randomly distributed data.

Second type is the parallelization on inter-radix level. Processor completely sorts whole array on lower levels of recursion. This parallelization helps mitigate overheads of thread synchronization.

Parallelization is guided at run-time. I.e. threads prefer to do inter-radix parallelization, however if some threads are out of work they help other threads on intra-radix level.

When size of the input array reaches some threshold, thread switches to single-threaded mode, i.e. no further sub-tasks are split (this also helps mitigate synchronization overheads).

Here is pseudo-code of the parallel algorithm:

struct radix_desc

{

// partial results

std::vector<data_t> radix [thread_count];

size_t radix_pending_count;

size_t position;

//...

};

struct radix_task

{

data_t input;

radix_desc& desc;

//...

void execute()

{

// partial radix split

for (size_t i = 0; i != input.size(); ++i)

{

size_t idx = input[i][desc.position];

desc.radix[thread_id][idx].push_back(input[i]);

}

if (0 == atomic_decrement(desc.radix_pending_count))

{

// spawn sub-tasks

for (size_t i = 0; i != byte_values; ++i)

{

// aggregate partial results

data_t result;

for (size_t j = 0; j != thread_count; ++j)

{

result.insert(result.end(), desc.radix[j][i]);

}

radix_desc desc = new radix_desc (...);

spawn_some_subtasks(desc, result);

}

}

}

};

Scheduling

I've implemented custom task-based scheduler on top of the Win32 threading API. In main part it's similar to classical Cilk-style work-stealing scheduler, though I've made some improvements on it. In particular I've added system-topology awareness, hyper-threading awareness, affinity-awareness, batch-spawn capability and manual task-depth control. All worker threads are strictly binded to EUs (execution units), stealing conducted based on the “distance” between EUs, i.e. worker thread tries to steal from neighbor threads first, then from threads running on different NUMA node (system-topology awareness). This allows to efficiently reuse data in shared L3 cache of the processors.

Sibling HT threads share single work-stealing deque (HT awareness), this allows them to keep as close to each other as possible in terms of working sets. Resources of single core (L1D cache, L1 DTLB, etc) are not capable to accommodate 2 distinct radix sorts, HT awareness allows HT sibling threads to work on single radix sort, so to say. Assume first HT thread completes radix split and spawns a bunch of sub-tasks. Then it picks up some sub-task to process, while second HT thread picks up another sub-task, data for that another sub task is already in L1D cache (as well as in L1 DTLB) of the core.

The scheduler is able to support affinity of tasks. Though I didn't have enough time to exploit the feature.

When thread completes radix split it submits up to 96 (number of printable characters in US-ASCII) sub-tasks, scheduler allows to submit all the tasks in single enqueue operation. This reduces synchronization overheads to some degree.

When thread submits new tasks to the scheduler it explicitly passes so called tasks depth as a parameter. Task depth relates to the task level in the work DAG. When thread pops task from own work-stealing deque it picks up task with the highest available level (the smallest piece of work), when thread steals task from remote work-stealing deque it picks up task the lowest available level (the biggest piece of work). This reduces number of steal operations.

Regarding Threading Building Blocks. Another possibility would be to use TBB's task scheduler. Usage of the TBB would not affect main logic of the program in any way, because it supports exactly the same task concept. On one hand TBB would allow to reduce amount of written code (no need to implement scheduler manually). On the other hand TBB's scheduler is not system-topology aware, not HT aware, does not provide batch spawn capability, and does not provide manual control over task depths (not relevant w/o HT awareness) (TBB's scheduler is affinity aware to some degree, i.e. it supports task affinities however does not supports thread affinities). Also TBB's scheduler has somehow bigger task spawn/consume overheads: some 600 cycles, while my scheduler some 200 cycles (on my hardware). Since the contest is about raw performance I've decided to implement own scheduler.

Single-threaded Optimizations

Avoiding copyback. Naïve radix sort implementation makes K (number of digits) copies of the whole data set in the copyback phase. In order to eliminate those copies I use following optimization. On start I allocate array for the sorted data:

struct output_cell

{

int count_;

uint32_t* data_;

};

size_t const output_size = 96*128*128;

output_cell* g_output = new output_cell [output_size];

3 most significant digits of the value determine index in that array:

size_t output_index(uint64_t val)

{

byte* v = (byte*)&val;

return ((size_t)v[3]) | ((size_t)v[2] << 7) | (((size_t)v[1] - 32) << 14);

}

4 least significant digits of the value are stored in the inner array:

void store_result(uint64_t val, size_t position)

{

size_t idx = output_index(val);

uint32_t v = (uint32_t)(val >> 32);

g_output[idx].data_[position] = v;

}

This way all copies of the data in the copyback phase are eliminated, sorted data are placed directly to the final destination.

Counting sort. When values reduced to 2 bytes (by 5 previous radix splits) I use counting sort (which is a special case of the radix sort with special intermediate representation of the values). Counting sort has the same computational complexity as the radix sort, however has lower space complexity and can be implemented more efficiently. Since I expect very few values will be sorted with counting sort at a time (i.e. counter array will be very sparse), I add bitmask to optimize search over counter array.

Pseudo-code of the counting sort:

void counting_sort(uint16_t* begin, uint16_t* end, uint32_t* output, uint32_t prefix)

{

uint32_t counter [256*256] = {};

bitmask_t bitmask;

for (uint16_t* pos = begin; pos != end; pos += 1)

{

uint16_t v = pos[0];

counter[v] += 1;

bitmask.set_bit(v);

}

for (uint16_t v; bitmask.get_and_reset_bit(v);)

{

do

{

uint32_t val = prefix;

val |= v;

output[0] = val;

output += 1;

}

while (--counter[v]);

}

}

bitmask_t::get_and_reset_bit() operation is implemented with the BSF instruction (_BitScanForward64() intrinsic). Bitmask optimization reduces computational complexity of the counting sort from 65536*N to 2*N.

Counting sort is not parallelized in my implementation. Since input data is uniformly distributed, I expect this to not affect performance. Though this is a possible further optimization which will allow better handling of not-so-randomly distributed data.

Template code generation. I heavily use C++ template programming in order to allow efficient code generation. Value is represented by the following class:

template<size_t digits_t> struct data_layout;

template<> struct data_layout<7> {typedef uint64_t value_t;};

template<> struct data_layout<6> {typedef uint64_t value_t;};

template<> struct data_layout<5> {typedef uint64_t value_t;};

template<> struct data_layout<4> {typedef uint32_t value_t;};

template<> struct data_layout<3> {typedef uint32_t value_t;};

template<> struct data_layout<2> {typedef uint16_t value_t;};

template<size_t digits_t>

struct value

{

typedef typename data_layout<digits_t>::value_t value_t;

value_t val;

value& operator = (value<digits_t + 1> const& r)

{

val = (value_t)(r.val >> (8 * (sizeof(r) - sizeof(*this))));

return *this;

}

char prefix() const

{

return ((char*)&val)[sizeof(*this) - digits_t];

}

};

All functions and classes related to radix sorting are also template parametrized by number of digits, and act accordingly to particular value layout, location of the radix prefix in the value, etc.

Also radix task is template parametrized by parameters is_single_threaded and is_parent_single_threaded. When is_single_threaded==true, task allocates subtasks on the stack and executes them directly. When is_parent_single_threaded==true, task avoids atomic counting of pending siblings, since parent allocates sub-tasks on the stack they all will complete when parent completes.

Memory allocation. Efficient memory allocation is crucial for single-threaded as well as multi-threaded (standard Windows allocator uses single mutex which significantly reduces scalability) performance of the implementation. I implement distributed region memory allocator, there is a pool of 2 MB pages per NUMA node, a thread privatizes a page from that pool and then uses region allocation on the page. When page exhausted thread privatizes another page, and so on. No memory is freed to the OS during radix sort, though some memory is reused internally. Also I implement simple caching memory allocator for objects of a particular size; the allocator is based on a per-thread lifo freelist. When object is freed it’s pushed onto the freelist, when object must be allocated it’s popped from the freelist.

Tools

I was considering Microsoft Visual C++ (MSVC) and Intel C++ (ICC) compilers. In 32-bit mode ICC showed impressive 30% speedup over MSVC (even more with profile-guided optimizations). However in 64-bit mode ICC showed wicked 20% slowdown (with maximum possible optimizations turned on, including /QxHost, /Qunroll, etc), profile-guided optimizations improve situation somehow but ICC still was behind MSVC. I didn't have time to investigate the problem, so I've decided to use MSVC for final submission.

As a profiler I used AMD CodeAnalyst, it's a simple profiler which allows to easily capture and analyze profile of the program. Profiling was crucial for single-threaded optimizations. Also it allowed me to verify that profile of the multi-threaded version is mainly identical to that of the single-threaded version, and that overheads for synchronization and scheduling are not greater than several percents – all this is a good sign of successful parallelization. Another option would be to use Intel PTU, it's somehow more complicated however would allow to capture processor performance events which is crucial for single-threaded optimization (for example it would answer what causes excessive pipeline stalls – L1D cache misses or L1 DTLB misses).

Another great tool I used is Windows Task Manager. I allowed me to track virtual memory consumption, CPU utilization, working set and number of page faults. The goal was to keep virtual memory consumption in expected bounds (~1.5 * input data size in my case), 100% utilization of the CPUs in parallel phase and 0 page faults (i.e. working set == virtual memory).

Taxi Paths

[This is my write-up for Intel Threading Challenge 2010. You may download the code for Microsoft Visual C++ at the bottom of the page]

Problem Statement

Write a threaded program to generate, classify and count paths between the origin (0,0) and a given point on the Carteisan grid. Paths are made up of moving from one integral grid point to another. There are three potential moves between grid points: one point North (parallel to the x-axis), one point East (parallel to the y-axis) or Northeast (diagonal toward the destination). The destination coordinates for the paths will come from the command line along with a file name to write out all generated paths.

The classification of paths is based on the number of each move used within the path regardless of the order of the moves. For example, if the destination point is (5,4), a ‘2-3-1' path contains two moves North, three moves Northeast, and one move East. Two examples of this category would be ‘NNneneneE" and "EneNneneN".

Input Description: The input to the program will be two non-negative integers and a file name, all on the application's command line. The integers will be the x- coordinate and y-coordinate of the destination point. The file given will be used to hold the generated paths to the destination point from the origin point (0,0).

Output Description: There are two outputs to be generated by the application. The first is the count of the number of paths for each relevant path composition category and the total number of paths in each. The counts reported by the program are to be printed to stdout.

The second expected output is the generated paths within the given output text file, one path per line. To keep the length of the output lines equal to the Manhattan distance between the origin and the destination, one character is to be printed for a move North (‘N') or East (‘E') and two characters for a Northeast move (‘ne'). The upper case and lower case will allow a human reading the file to distinguish between one move North followed by a move East (‘NE') and a single move Northeast (‘ne'). In this way it is not necessary to put a space character between moves of a path, which will also keep the size of the file smaller.

Next page: Single-Threaded Implementation

Single-Threaded Implementation

Single-Threaded Implementation

The insight to efficient single-threaded implementation is that all paths to point (X,Y) can be divided into the following classes:

	
	paths with X horizontal moves, Y vertical moves and 0 diagonal moves

	paths with X-1 horizontal moves, Y-1 vertical moves and 1 diagonal move

	…

	paths with X-D horizontal moves, Y-D vertical moves and D diagonal moves, where D=min(X,Y)

Moreover, all moves in a particular class can be easily enumerated as permutations of moves. Moreover, total number of paths in a particular class can be calculated arithmetically by the following formula:

N(x, y, d) = (x + y + d)! / (x! + y! + d!) (1)

Moreover, all paths in a particular class have equal length.

And yes, it's the same classes that defined in the problem statement, so we don't really need to calculate path statistics during path enumeration.

All this allows us to create quite efficient implementation. OK, a line of code worths thousands words:

// enumeration of possible moves: horizontal, vertical and diagonal

enum move_t {move_x, move_y, move_d};

// path class

struct path_class_t

{

int x_count;

int y_count;

int d_count;

};

// calculates total path count for a class

size_t calculate_path_count(size_t x, size_t y, size_t d)

{

return factorial(x + y + d) / factorial(x) / factorial(y) / factorial(d);

}

// main computations procedure

void calculate(size_t x, size_t y, std::map<path_class_t, size_t>& classification, std::vector<std::vector<move_t>>& path_set)

{

// first calculate classification and total path count

size_t total_path_count = 0;

for (size_t d = 0; d <= std::min(x, y); d += 1)

{

size_t count = calculate_path_count(x - d, y - d, d);

total_path_count += count;

path_class_t pc = {y - d, x - d, d};

classification[pc] = count;

}

// then enumerate all paths for each class

path_set.resize(total_path_count);

std::vector<move_t>* path_pos = &path_set[0];

for (size_t d = 0; d <= std::min(x, y); d += 1)

{

std::vector<move_t> path;

generate_recursive(x - d, y - d, d, path, path_pos);

}

}

// recursive enumeration of all possible permutations

void generate_recursive(size_t x, size_t y, size_t d, std::vector<move_t>& path, std::vector<move_t>*& path_pos)

{

if (x == 0 && y == 0 && d == 0)

{

// if all moves are exhausted, then we have reached the destination point

path.push_back(move_end);

*path_pos++ = path;

path.pop_back();

}

else

{

if (x)

{

// if not all 'x' moves are exhausted, then move in 'x' direction

path.push_back(move_x);

generate_recursive(x - 1, y, d, path, path_pos);

path.pop_back();

}

if (y)

{

// if not all 'y' moves are exhausted, then move in 'y' direction

path.push_back(move_y);

generate_recursive(x, y - 1, d, path, path_pos);

path.pop_back();

}

if (d)

{

// if not all 'd' moves are exhausted, then move in 'd' direction

path.push_back(move_d);

generate_recursive(x, y, d - 1, path, path_pos);

path.pop_back();

}

}

}

Next page: Speeding Up

Speeding Up

The implementation is quite good. However we can do better.

The recursive generation procedure generate_recursive() contains a lot of unpredictable branching and miserable amount of work per function call. Both things are bad for performance. Unpredictable branching puts out deep pipelines of modern microprocessors, while miserable amount of work per function call makes function call overheads visible.

The second insight is that we can dispatch several moves at once by means of helper dispatch table. For example, if we have 2 “x” moves and 2 “y” moves and want to dispatch 3 moves at once we have following variants:

xxy

xyx

yxx

yyx

yxy

xyy

So what we need is a helper table which is indexed by amount available x, y and d moves and contains all possible permutations for the combination. This way we can dispatch up to N moves at a time (all but last dispatch dispatches exactly N moves, while last dispatch dispatches remaining moves). This allows us to eliminate all unpredictable branching, plus increase amount of work per function call, plus express code as array processing (and modern processors are very good at array processing). Here is the code:

// count of moves dispatched at a time

size_t const dispatch_count = 8;

typedef uint64_t dispatch_t;

// dispatch table entry contains number of "consumed" x, y, and d moves

// and a path part which is a combination of "consumed" moves

struct dispatch_entry

{

size_t x;

size_t y;

size_t d;

dispatch_t path_part;

};

// recursive enumeration of all possible permutations

// by means of a helper dispatch table

void generate_recursive2(size_t x, size_t y, size_t d, std::vector<dispatch_t>& path, std::vector<dispatch_t>*& path_pos)

{

bool const is_last_dispatch_hop = (x + y + d <= dispatch_count);

std::vector<dispatch_entry> const& entries = get_dispatch_entries(x, y, d);

for (size_t i = 0; i != entries.size(); i += 1)

{

dispatch_entry const& ent = entries[i];

path.push_back(ent.path_part);

if (is_last_dispatch_hop)

*path_pos++ = path;

else

generate_recursive2(x - ent.x, y - ent.y, d - ent.d, path, path_pos);

path.pop_back();

}

}

Next page: Parallelization

Parallelization

The rule of thumb says: prefer the highest possible level for parallelization. This tends to minimize synchronization overheads, that can easily dominate in execution time of improperly parallelized program. Path classes represent the natural partitioning of work for parallelization. Due to the arithmetical equation (1) we can calculate number of paths in each class, and length of paths in each class is also known. So we can determine position of each class in the output array, and fire off generation of paths for each class as a separate and completely independent parallel task.

However, analysis shows that this is insufficient partitioning. For example, for the point (12,12) we have following path classes:

12-0-12 paths: 2704156

11-1-11 paths: 16224936

10-2-10 paths: 42678636

9-3-9 paths: 64664600

8-4-8 paths: 62355150

7-5-7 paths: 39907296

6-6-6 paths: 17153136

5-7-5 paths: 4900896

4-8-4 paths: 900900

3-9-3 paths: 100100

2-10-2 paths: 6006

1-11-1 paths: 156

0-12-0 paths: 1

That's only 13 tasks with highly uneven work per task.

Another rule of thumb says: task granularity must be between ~2 microseconds and ~100 microseconds. Provided finer-grained partitioning (even smaller tasks), task scheduling overheads dominate in execution time. Provided coarser-grained partitioning (even larger tasks), program may not yield enough parallelism to load all available threads. Important consequence: partitioning (task granularity) should not be driven by input data (otherwise one looses control over task granularity).(for details see Granularity and Parallel Performance chapter from Intel Guide for Developing Multithreaded Applications)

So I employed another level of partitioning: each path class is further divided into smaller tasks. Size of tasks does not depend on input data this time, instead it's roughly constant in absolute size to satisfy the aforementioned constraints. I choose size of the generated output as task size metric, i.e., for example, each task generates ~1MB of output data (this is quite accurate characteristic of execution time for this problem) . Here is the pseudo-code of partitioning:

void partition_path_class(task_t task)

{

size_t total_output_memory = 0;

size_t prev_entry_index = 0;

std::vector<dispatch_entry> const& entries = get_dispatch_entries(task.x, task.y, task.d);

// iterate over all dispatch entries and split them into ranges,

// so that each range generates ~partitioning_threshold of output.

// fire off each range as separate task

for (size_t i = 0; i != entries.size(); i += 1)

{

size_t output_memory = calculate_output_memory(task, entries[i]);

total_output_memory += output_memory;

if (total_output_memory >= partitioning_threshold || i == entries.size() - 1)

{

// spawn a task to process entries [prev_entry_index, i]

spawn_task(prev_entry_index, i);

prev_entry_index = i + 1;

}

}

}

When parallelizing a program there are always some obligatory things to check. Namely, loсk contention, heap contention and excessive data sharing (including false sharing). Each of which, if not resolved, can easily prevent scaling. Analysis shows that my program in not amenable to all 3 things: there is not loсks, there is no dynamic memory allocation during work, and there is no data sharing.

Next page: Fighting The Memory Bandwidth Problem

Fighting The Memory Bandwidth Problem

It's not surprisingly that after all optimizations the program hit The Memory Bandwidth Wall, i.e. became memory bandwidth bound. A program is memory bandwidth bound if it consumes all available memory bandwidth and the bandwidth becomes scalability limiting factor. (for details see Detecting Memory Bandwidth Saturation in Threaded Applications chapter from Intel Guide for Developing Multithreaded Applications)

The memory bandwidth problem is not so of a problem in the single-threaded world, because the program still processes gigabytes of data per second and is blazingly fast. But it's a serious problem in the multi-threaded world, because the program does not run any faster when additional threads added.

There is not much one can do when a program is memory bandwidth bound (except upgrading hardware of course). The only thing software developer can do about it is to reduce amount of input and/or output data. In this problem we are concerned only with output, and fortunately it's format is not fixed. So I tried to reduce size of output data as much as possible.

The first natural thing to do is to encode each move as 2 bits (instead of a whole byte). This reduces output 4 times.

The next thing I done is elimination of delimiters between paths. Since I generate paths based on path class, and length of paths in each class is constant and known, delimiters are needless.

Those measures did not help with fighting the memory bandwidth problem. It's easy to observe that 2 bits per move is not optimal packing (2 bits can represent 4 states, while we use only 3), and that it's possible to pack 5 moves into a byte (3^5 <= 2^8). So I switched to “5 moves per byte” encoding:

byte = move0*3^0 + move1*3^1 + move2*3^2 + move3*3^3 + move4*3^4

Which is quite optimal because it uses 243 states out of 256 possible states (95% efficiency). For the problem of size (11,11) there are 45'046'719 possible paths, and my program uses 184'257'251 bytes for output, which is 4.09 bytes per path on average.

The program does speedup proportionally to decrease of output data size. However it's still memory bandwidth bound, i.e. execution time depends on total system's memory bandwidth rather than on processor/core count.

Next page: Performance Results

Performance Results

For performance and scalability testing I used 2 services: Intel Parallel Universe (PU) and Intel Multicore Testing Lab (MTL). MTL features machines with incredible 64 hardware threads which is good for scalability testing, while PU draws nice and comprehensible performance graphs and provides Intel Parallel Amplifier reports for quick dive into performance problems.

Here is a performance report from PU for (13,13) input:

And here are results of performance tests for 3 different machines:

Scalable Architecture

In this section I am going to cover aspects related to scalable architecture, scalability patterns and anti-patterns, things like message-passing and logging and, perhaps, questions related to network and disk IO.

Move on to Introduction

Introduction

There are 3 levels in every software system: high-level architecture, mid-level design and low-level implementation. You know, sometimes I hear statements like "My system is not scalable. But I only need to spice it with cool lockfree containers, and it will become perfectly scalable". Sorry, it does not work that way. Scalability starts with good high-level architecture. It's trivially easy to kill scalability on the lowest level with excessive amounts of write sharing, but it does not belittle value of good high-level architecture. In the end, all levels are equally important.

In the context of scalability a good analogy to software system is an enterprise. Assume that you need to design workrooms and production processes that will allow lots of personnel to work efficiently (read concurrently). Will you require all tasks to pass via a single man (logging)? How many toilets you need, and how will you place them (memory management)? Do you want to maintain certain ratio between programmers, testers and managers, or you will leave it to chance (various stages of processing)? The principles are all the same - excessive communications, dependencies, waits and centralization kill concurrency.

Another good method is to think about a multicore processor as it is a distributed cluster, so that each communication between threads results in a network transfer (and it's actually roughly that way on physical level). So do you want that processing of each transaction in your server will cause 20 transfers over a network? Or you will try to do with 2? Of course things are no that bad - communications inside of a multicore processor are cheaper, however it will drive you in the right direction, and will allow you to build forward scalable solutions.

So, the key aspects of scalable architectures are Decentralization and Independence.

Decentralization is important because centralized systems inherently do not scale. For example, consider thread scheduler inside of an OS. While we have a single core processor, centralized scheduler works perfectly – it makes optimal decisions w/o any additional overheads. Now consider that we have a quad-core processor, each scheduling decision now requires some amount of communication (in the form of physical cache-line transfers between cores) and there are also some amount of idling due to mutual exclusion; but the system overall works acceptably because the scheduler is activated once per, let's say, 5 ms (20 ms time slice / 4 cores). And now consider that we have 8 processors each with 32 cores, a centralized scheduler can seriously negatively impact system's scalability – communication is more costly (because components are more physically distributed), scheduler is activated each 80 mks (20 ms time slice / 256 cores) so there is inevitable contention and idling.

What all modern OS do is employing of distributed thread schedulers. That is, each hardware thread has it's own queues of runnable threads and other required state. However, it has 2 downsides: (1) sub-optimal decisions and (2) increased complexity.

Sub-optimal decisions are inherent to distributed systems. Since each thread is now guided by only a part of information (otherwise it would be a centralized system) it can't potentially make optimal decisions. In the context of thread scheduling sub-optimality will result in non-strict priorities. For example, the highest priority thread in local queue of the current processor has priority 5, however, another processor has runnable thread with priority 10. Optimal decision would be to execute the thread with priority 10, but a decentralized scheduler will execute the thread with priority 9.

I think it's evident that it's much more difficult to create a distributed scheduler (as opposed to a centralized one): you need to cope with state distribution, state aggregation, use more involved algorithms, tolerate sub-optimal decisions, etc.

Independence is important because each additional dependency has associated costs (some communication between threads must happen in order to satisfy a dependency) and limits available concurrency (a computation can't start until the dependency is satisfied). For example, consider a network router, it has a centralized routing table which is updated periodically (each several seconds), and a group of worker threads which route network packets according to the routing table. A naïve approach would be to use a reader-writer mutex to protect the table during updates. However, it would introduce dependencies between worker threads and updater thread (updater needs to wait while workers finish with the table, workers need to wait while updater finish with the table) (click for larger version):

We can break the dependencies by means of MVCC (multi-version concurrency control). Namely, instead of waiting for workers updater thread creates a new version of the routing table, applies necessary changes to it and publishes it (this pattern can be implemented with Differential Reference Counting). From this moment forward workers use updated version for handling of new requests (click for larger version):

As you may see, now concurrency is improved - workers and updater thread waits are eliminated; also synchronization overheads are smaller, because there is no need for costly mutual exclusion algorithms.

Move on to General Recipe

General Recipe

The general recipe for scalable architecture looks roughly as follows.

First, you need to create enough threads. Well, without that you can't possibly exploit hardware concurrency. Generally, you need K*P threads, where P – number of processors (hardware threads), and K – application specific coefficient. Ideal value of K is 1 (number of threads == number of processors). Less values of K will inevitably result in under-subscription of processors, that is, some hardware threads will be unutilized. Larger values of K will result in over-subscription of processors, however, modest over-subscription is not very harmful (OS is perfectly able to dispatch several threads per processor w/o significant overheads). But modest over-subscription can help to mitigate episodic blocking of threads, which can be unpractical to eliminate from complexity point of view. So, reasonable value of K is, let's say, 1..4.

However, what you should not do is to make number of threads depending on data set size, or transaction rate, or subsystem/plugin count. Because then you are loosing control over it, and you get either under-subscription or over-subscription.

Also keep in mind that a thread is not an application-level abstraction, it's an abstraction of a processor (thing that can execute code, any code). So don't create threads to do particular functions – any thread in your program can execute any function (however there can be exception from the rule – for example, frequently it's convenient to have a dedicated GUI thread). Don't create threads only to track timers. Don't create threads only to do IO. Threads should generally be one level below application logic.

Second, you need work distribution/balancing mechanisms. It makes no sense to have P threads, when work is distributed very unevenly between them, and some threads are mostly idle. This is also not an application level. You need some work distribution/balancing machinery, and it must be dynamic and feedback based. Why? Because you don't how many threads there will be, data set is generally unknown, application logic and details are in constant change, hardware is changing, plus there can other processes that contend for CPU and IO. The only way handle that is some reactive feedback based mechanism.

Third, don't extensively use mutexes and other explicit or implicit forms of mutual exclusion. Think of mutexes as anti-threads :) They are not means for concurrency, they are means for suppressing concurrency. I hope it's evident that if most of your processing happens under a mutex, then only 1 thread at a time can do useful work.

Fourth, eliminate mutable shared state to the extent possible. It does not scale now, it won't scale tomorrow, and there is no way to make it scalable. Mutation of shared state causes cache-coherence traffic, which is slow (as compared to local computations), and cache-coherence interconnects have limited bandwidth, so they can become a bottleneck in a system.

In short, each core must be supplied with own work and own data and work on it independently.

Case Study: Actor Scheduler

- ~300 lines of C code

- scalable

- fast

- fair (starvation-free)

In computer science, the Actor model is a mathematical model of concurrent computation that treats "actors" as the universal primitives of concurrent digital computation: in response to a message that it receives, an actor can make local decisions, create more actors, send more messages, and determine how to respond to the next message received. The Actor model originated in 1973.[1] It has been used both as a framework for a theoretical understanding of computation, and as the theoretical basis for several practical implementations of concurrent systems. The relationship of the model to other work is discussed in Indeterminacy in concurrent computation and Actor model and process calculi.

Contents

[hide]

	1 History

	2 Fundamental concepts

	3 Formal systems

	4 Applications

	5 Models prior to the Actor model

	5.1 Lambda calculus

	5.2 Simula

	5.3 Smalltalk

	5.4 Petri nets

	5.5 Threads, locks, and buffers (channels)

	6 Message-passing semantics

	6.1 Unbounded nondeterminism controversy

	6.2 Direct communication and asynchrony

	6.3 Actor creation plus addresses in messages means variable topology

	6.4 Inherently concurrent

	6.5 No requirement on order of message arrival

	6.6 Locality

	6.7 Composing Actor Systems

	6.8 Behaviors

	6.9 Modeling other concurrency systems

	6.10 Computational Representation Theorem

	6.11 Relationship to mathematical logic

	6.12 Migration

	6.13 Security

	6.14 Synthesizing addresses of actors

	6.15 Contrast with other models of message-passing concurrency

	7 Current importance

	8 Actor researchers

	9 Programming with Actors

	9.1 Early Actor programming languages

	9.2 Later Actor programming languages

	9.3 Actor libraries and frameworks

	10 See also

	11 References

	12 Further reading

	13 External links

History

Main article: History of the Actor model

Unlike previous models of computation, the Actor model was inspired by physics including general relativity and quantum mechanics. It was also influenced by the programming languages Lisp, Simula and early versions of Smalltalk, as well as capability-based systems and packet switching. Its development was "motivated by the prospect of highly parallel computing machines consisting of dozens, hundreds or even thousands of independent microprocessors, each with its own local memory and communications processor, communicating via a high-performance communications network."[2] Since that time, the advent of massive concurrency through multi-core computer architectures has rekindled interest in the Actor model.

Following Hewitt, Bishop, and Steiger's 1973 publication, Irene Greif developed an operational semantics for the Actors model as part of her doctoral research.[3] Two years later, Henry Baker and Hewitt published a set of axiomatic laws for Actor systems.[4] Other major milestones include William Clinger's dissertation, in 1981, introducing a denotational semantics based on power domains,[2] and Gul Agha's 1985 dissertation which further developed a transition-based semantic model complementary to Clinger's.[5] This resulted in the full development of actor model theory.

Major software implementation work was done by Russ Atkinson, Beppe Attardi, Henry Baker, Gerry Barber, Peter Bishop, Peter de Jong, Ken Kahn, Henry Lieberman, Carl Manning, Tom Reinhardt, Richard Steiger, and Dan Theriault, in the Message Passing Semantics Group at Massachusetts Institute of Technology (MIT). Research groups led by Chuck Seitz at California Institute of Technology (Caltech) and Bill Dally at MIT constructed computer architectures that further developed the message passing in the model. See Actor model implementation.

Research on the Actor model has been carried out at Caltech Computer Science, Kyoto University Tokoro Laboratory, MCC, MIT Artificial Intelligence Laboratory, SRI, Stanford University, University of Illinois at Urbana-Champaign Open Systems Laboratory, Pierre and Marie Curie University (University of Paris 6), University of Pisa, University of Tokyo Yonezawa Laboratory and elsewhere.

Fundamental concepts

The Actor model adopts the philosophy that everything is an actor. This is similar to the everything is an object philosophy used by some object-oriented programming languages, but differs in that object-oriented software is typically executed sequentially, while the Actor model is inherently concurrent.

An actor is a computational entity that, in response to a message it receives, can concurrently:

	
	send a finite number of messages to other actors;

	create a finite number of new actors;

	designate the behavior to be used for the next message it receives.

There is no assumed sequence to the above actions and they could be carried out in parallel.

Decoupling the sender from communications sent was a fundamental advance of the Actor model enabling asynchronous communication and control structures as patterns of passing messages.[6]

Recipients of messages are identified by address, sometimes called "mailing address". Thus an actor can only communicate with actors whose addresses it has. It can obtain those from a message it receives, or if the address is for an actor it has itself created.

The Actor model is characterized by inherent concurrency of computation within and among actors, dynamic creation of actors, inclusion of actor addresses in messages, and interaction only through direct asynchronous message passing with no restriction on message arrival order.

Formal systems

Over the years, several different formal systems have been developed which permit reasoning about systems in the Actor model. These include:

	Operational semantics[3][7]

	Laws for Actor systems[4]

	Denotational semantics[2][8]

	Transition semantics[5]

There are also formalisms that are not fully faithful to the Actor model in that they do not formalize the guaranteed delivery of messages including the following (See Attempts to relate Actor semantics to algebra and linear logic):

	
	Several different Actor algebras[9][10][11]

	Linear logic[12]

Applications

[image: Question book-new.svg]

This article needs additional citations for verification.

Please help improve this article by adding reliable references. Unsourced material may be challenged and removed. (December 2006)

The Actors model can be used as a framework for modelling, understanding, and reasoning about, a wide range of concurrent systems. For example:

	
	Electronic mail (e-mail) can be modeled as an Actor system. Accounts are modeled as Actors and email addresses as Actor addresses.

	Web Services can be modeled with SOAP endpoints modeled as Actor addresses.

	Objects with locks (e.g. as in Java and C#) can be modeled as a Serializer, provided that their implementations are such that messages can continually arrive (perhaps by being stored in an internal queue). A serializer is an important kind of Actor defined by the property that it is continually available to the arrival of new messages; every message sent to a serializer is guaranteed to arrive.

	Testing and Test Control Notation (TTCN), both TTCN-2 and TTCN-3, follows Actor model rather closely. In TTCN, Actor is a test component: either parallel test component (PTC) or main test component (MTC). Test components can send and receive messages to and from remote partners (peer test components or test system interface), the latter being identified by its address. Each test component has a behaviour tree bound to it; test components run in parallel and can be dynamically created by parent test components. Built-in language constructs allow the definition of actions to be taken when an expected message is received from the internal message queue, like sending a message to another peer entity or creating new test components.

Models prior to the Actor model

The Actor model builds on previous models of computation.

Lambda calculus

The lambda calculus of Alonzo Church can be viewed as the earliest message passing programming language (see Hewitt, Bishop, and Steiger 1973; Abelson and Sussman 1985). For example, the lambda expression below implements a tree data structure when supplied with parameters for a leftSubTree and rightSubTree. When such a tree is given a parameter message "getLeft", it returns leftSubTree and likewise when given the message "getRight" it returns rightSubTree.

λ(leftSubTree,rightSubTree)

λ(message)

if (message == "getLeft") then leftSubTree

else if (message == "getRight") then rightSubTree

However, the semantics of the lambda calculus were expressed using variable substitution in which the values of parameters were substituted into the body of an invoked lambda expression. The substitution model is unsuitable for concurrency because it does not allow the capability of sharing of changing resources. Inspired by the lambda calculus, the interpreter for the programming language Lisp made use of a data structure called an environment so that the values of parameters did not have to be substituted into the body of an invoked lambda expression. This allowed for sharing of the effects of updating shared data structures but did not provide for concurrency.

Simula

Simula 67 pioneered using message passing for computation, motivated by discrete event simulation applications. These applications had become large and unmodular in previous simulation languages. At each time step, a large central program would have to go through and update the state of each simulation object that changed depending on the state of whichever simulation objects that it interacted with on that step. Kristen Nygaard and Ole-Johan Dahl developed the idea (first described in an IFIP workshop in 1967) of having methods on each object that would update its own local state based on messages from other objects. In addition they introduced a class structure for objects with inheritance. Their innovations considerably improved the modularity of programs.

However, Simula used coroutine control structure instead of true concurrency.

Smalltalk

Alan Kay was influenced by message passing in the pattern-directed invocation of Planner in developing Smalltalk-71. Hewitt was intrigued by Smalltalk-71 but was put off by the complexity of communication that included invocations with many fields including global, sender, receiver, reply-style, status, reply, operator selector, etc.

In 1972 Kay visited MIT and discussed some of his ideas for Smalltalk-72 building on the Logo work of Seymour Papert and the "little person" model of computation used for teaching children to program. However, the message passing of Smalltalk-72 was quite complex. Code in the language was viewed by the interpreter as simply a stream of tokens. As Dan Ingalls later described it:

The first (token) encountered (in a program) was looked up in the dynamic context, to determine the receiver of the subsequent message. The name lookup began with the class dictionary of the current activation. Failing there, it moved to the sender of that activation and so on up the sender chain. When a binding was finally found for the token, its value became the receiver of a new message, and the interpreter activated the code for that object's class.

Thus the message-passing model in Smalltalk-72 was closely tied to a particular machine model and programming-language syntax that did not lend itself to concurrency. Also, although the system was bootstrapped on itself, the language constructs were not formally defined as objects that respond to Eval messages (see discussion below). This led some to believe that a new mathematical model of concurrent computation based on message passing should be simpler than Smalltalk-72.

Subsequent versions of the Smalltalk language largely followed the path of using the virtual methods of Simula in the message-passing structure of programs. However Smalltalk-72 made primitives such as integers, floating point numbers, etc. into objects. The authors of Simula had considered making such primitives into objects but refrained largely for efficiency reasons. Java at first used the expedient of having both primitive and object versions of integers, floating point numbers, etc. The C# programming language (and later versions of Java, starting with Java 1.5) adopted the less elegant solution of using boxing and unboxing, a variant of which had been used earlier in some Lisp implementations.

The Smalltalk system went on to become very influential, innovating in bitmap displays, personal computing, the class browser interface, and many other ways. For details see Kay's The Early History of Smalltalk[13]. Meanwhile the Actor efforts at MIT remained focused on developing the science and engineering of higher level concurrency. (See the paper by Jean-Pierre Briot for ideas that were developed later on how to incorporate some kinds of Actor concurrency into later versions of Smalltalk.)

Petri nets

Prior to the development of the Actor model, Petri nets were widely used to model nondeterministic computation. However, they were widely acknowledged to have an important limitation: they modeled control flow but not data flow. Consequently they were not readily composable, thereby limiting their modularity. Hewitt pointed out another difficulty with Petri nets: simultaneous action. I.e., the atomic step of computation in Petri nets is a transition in which tokens simultaneously disappear from the input places of a transition and appear in the output places. The physical basis of using a primitive with this kind of simultaneity seemed questionable to him. Despite these apparent difficulties, Petri nets continue to be a popular approach to modelling concurrency, and are still the subject of active research.

Threads, locks, and buffers (channels)

Prior to the Actor model, concurrency was defined in low-level machine terms of threads, locks and buffers(channels). It certainly is the case that implementations of the Actor model typically make use of these hardware capabilities. However, there is no reason that the model could not be implemented directly in hardware without exposing any hardware threads and locks. Also, there is no necessary relationship between the number of Actors, threads, and locks that might be involved in a computation. Implementations of the Actor model are free to make use of threads and locks in any way that is compatible with the laws for Actors.

Message-passing semantics

The Actor model is about the semantics of message passing.

Unbounded nondeterminism controversy

Arguably, the first concurrent programs were interrupt handlers. During the course of its normal operation, a computer needed to be able to receive information from outside (characters from a keyboard, packets from a network, etc.). So when the information arrived, execution of the computer was "interrupted" and special code called an interrupt handler was called to put the information in a buffer where it could be subsequently retrieved.

In the early 1960s, interrupts began to be used to simulate the concurrent execution of several programs on a single processor.[14] Having concurrency with shared memory gave rise to the problem of concurrency control. Originally, this problem was conceived as being one of mutual exclusion on a single computer. Edsger Dijkstra developed semaphores and later, between 1971 and 1973[15], Tony Hoare[16] and Per Brinch Hansen[17] developed monitors to solve the mutual exclusion problem. However, neither of these solutions provided a programming-language construct that encapsulated access to shared resources. This encapsulation was later accomplished by the serializer construct ([Hewitt and Atkinson 1977, 1979] and [Atkinson 1980]).

The first models of computation (e.g. Turing machines, Post productions, the lambda calculus, etc.) were based on mathematics and made use of a global state to represent a computational step (later generalized in [McCarthy and Hayes 1969] and [Dijkstra 1976] see Event orderings versus global state). Each computational step was from one global state of the computation to the next global state. The global state approach was continued in automata theory for finite state machines and push down stack machines, including their nondeterministic versions. Such nondeterministic automata have the property of bounded nondeterminism; that is, if a machine always halts when started in its initial state, then there is a bound on the number of states in which it halts.

Edsger Dijkstra further developed the nondeterministic global state approach. Dijkstra's model gave rise to a controversy concerning unbounded nondeterminism. Unbounded nondeterminism (also called unbounded indeterminacy), is a property of concurrency by which the amount of delay in servicing a request can become unbounded as a result of arbitration of contention for shared resources while still guaranteeing that the request will eventually be serviced. Hewitt argued that the Actor model should provide the guarantee of service. In Dijkstra's model, although there could be an unbounded amount of time between the execution of sequential instructions on a computer, a (parallel) program that started out in a well defined state could terminate in only a bounded number of states [Dijkstra 1976]. Consequently, his model could not provide the guarantee of service. Dijkstra argued that it was impossible to implement unbounded nondeterminism.

Hewitt argued otherwise: there is no bound that can be placed on how long it takes a computational circuit called an arbiter to settle (see metastability in electronics). Arbiters are used in computers to deal with the circumstance that computer clocks operate asynchronously with input from outside, e.g. keyboard input, disk access, network input, etc. So it could take an unbounded time for a message sent to a computer to be received and in the meantime the computer could traverse an unbounded number of states.

The Actor Model features unbounded nondeterminism which was captured in a mathematical model by Will Clinger using domain theory.[2] There is no global state in the Actor model.

Direct communication and asynchrony

Messages in the Actor model are not necessarily buffered. This was a sharp break with previous approaches to models of concurrent computation. The lack of buffering caused a great deal of misunderstanding at the time of the development of the Actor model and is still a controversial issue. Some researchers argued that the messages are buffered in the "ether" or the "environment". Also, messages in the Actor model are simply sent (like packets in IP); there is no requirement for a synchronous handshake with the recipient.

Actor creation plus addresses in messages means variable topology

A natural development of the Actor model was to allow addresses in messages. Influenced by packet switched networks [1961 and 1964], Hewitt proposed the development of a new model of concurrent computation in which communications would not have any required fields at all: they could be empty. Of course, if the sender of a communication desired a recipient to have access to addresses which the recipient did not already have, the address would have to be sent in the communication.

A computation might need to send a message to a recipient from which it would later receive a response. The way to do this is to send a communication which has the message along with the address of another actor called the resumption (sometimes also called continuation or stack frame) along with the message. The recipient could then cause a response message to be sent to the resumption.

Actor creation plus the inclusion of the addresses of actors in messages means that Actors have a potentially variable topology in their relationship to one another much as the objects in Simula also had a variable topology in their relationship to one another.

Inherently concurrent

As opposed to the previous approach based on composing sequential processes, the Actor model was developed as an inherently concurrent model. In the Actor model sequentiality was a special case that derived from concurrent computation as explained in Actor model theory.

No requirement on order of message arrival

Hewitt argued against adding the requirement that messages must arrive in the order in which they are sent to the Actor. If output message ordering is desired, then it can be modeled by a queue Actor that provides this functionality. Such a queue Actor would queue the messages that arrived so that they could be retrieved in FIFO order. So if an Actor X sent a message M1 to an Actor Y, and later X sent another message M2 to Y, there is no requirement that M1 arrives at Y before M2.

In this respect the Actor model mirrors packet switching systems which do not guarantee that packets must be received in the order sent. Not providing the order of delivery guarantee allows packet switching to buffer packets, use multiple paths to send packets, resend damaged packets, and to provide other optimizations.

For example, Actors are allowed to pipeline the processing of messages. What this means is that in the course of processing a message M1, an Actor can designate the behavior to be used to process the next message, and then in fact begin processing another message M2 before it has finished processing M1. Just because an Actor is allowed to pipeline the processing of messages does not mean that it must pipeline the processing. Whether a message is pipelined is an engineering tradeoff. How would an external observer know whether the processing of a message by an Actor has been pipelined? There is no ambiguity in the definition of an Actor created by the possibility of pipelining. Of course, it is possible to perform the pipeline optimization incorrectly in some implementations, in which case unexpected behavior may occur.

Locality

Another important characteristic of the Actor model is locality.

Locality means that in processing a message an Actor can send messages only to addresses that it receives in the message, addresses that it already had before it received the message and addresses for Actors that it creates while processing the message. (But see Synthesizing Addresses of Actors.)

Also locality means that there is no simultaneous change in multiple locations. In this way it differs from some other models of concurrency, e.g., the Petri net model in which tokens are simultaneously removed from multiple locations and placed in other locations.

Composing Actor Systems

The idea of composing Actor systems into larger ones is an important aspect of modularity that was developed in Gul Agha's doctoral dissertation,[5], developed later by Gul Agha, Ian Mason, Scott Smith, and Carolyn Talcott.[7]

Behaviors

A key innovation was the introduction of behavior specified as a mathematical function to express what an Actor does when it processes a message including specifying a new behavior to process the next message that arrives. Behaviors provided a mechanism to mathematically model the sharing in concurrency.

Behaviors also freed the Actor model from implementation details, e.g., the Smalltalk-72 token stream interpreter. However, it is critical to understand that the efficient implementation of systems described by the Actor model require extensive optimization. See Actor model implementation for details.

Modeling other concurrency systems

Other concurrency systems (e.g. process calculi) can be modeled in the Actor model using a two-phase commit protocol.[18]

Computational Representation Theorem

There is a Computational Representation Theorem in the Actor model for systems which are closed in the sense that they do not receive communications from outside. The mathematical denotation denoted by a closed system S. is constructed increasingly better approximations from an initial behavior called ⊥S using a behavior-approximating function progressionS to construct a denotation (meaning) for S as follows [Hewitt 2008; Clinger 1981]:

DenoteS ≡ ⊔i∈ω progressionSi(⊥S)

In this way, S can be mathematically characterized in terms of all its possible behaviors (including those involving unbounded nondeterminism). Although DenoteS is not an implementation of S, it can be used to prove a generalization of the Church-Turing-Rosser-Kleene thesis [Kleene 1943]:

Enumeration Theorem: If the primitive Actors of a closed Actor system are effective, then its possible outputs are recursively enumerable.

Proof: Follows immediately from the Representation Theorem.

Relationship to mathematical logic

The development of the Actor model has an interesting relationship to mathematical logic. One of the key motivations for its development was to understand and deal with the control structure issues that arose in development of the Planner programming language. Once the Actor model was initially defined, an important challenge was to understand the power of the model relative to Robert Kowalski's thesis that "computation can be subsumed by deduction". Kowalski's thesis turned out to be false for the concurrent computation in the Actor model (see Indeterminacy in concurrent computation). This result is still somewhat controversial and it reversed previous expectations because Kowalski's thesis is true for sequential computation and even some kinds of parallel computation, e.g. the lambda calculus.

Nevertheless attempts were made to extend logic programming to concurrent computation. However, Hewitt and Agha [1991] claimed that the resulting systems were not deductive in the following sense: computational steps of the concurrent logic programming systems do not follow deductively from previous steps (see Indeterminacy in concurrent computation).

Migration

Migration in the Actor model is the ability of Actors to change locations. E.g., in his dissertation, Aki Yonezawa modeled a post office that customer Actors could enter, change locations within while operating, and exit. An Actor that can migrate can be modeled by having a location Actor that changes when the Actor migrates. However the faithfulness of this modeling is controversial and the subject of research.

Security

The security of Actors can be protected in the following ways:

	
	hardwiring in which Actors are physically connected

	hardware as in Burroughs B5000, Lisp machine, etc.

	virtual machines as in Java virtual machine, Common Language Runtime, etc.

	operating systems as in capability-based systems

	signing and/or encryption of Actors and their addresses

Synthesizing addresses of actors

A delicate point in the Actor model is the ability to synthesize the address of an Actor. In some cases security can be used to prevent the synthesis of addresses (see Security). However, if an Actor address is simply a bit string then clearly it can be synthesized although it may be difficult or even infeasible to guess the address of an Actor if the bit strings are long enough. SOAP uses a URL for the address of an endpoint where an Actor can be reached. Since a URL is a character string, it can clearly be synthesized although encryption can make it virtually impossible to guess.

Synthesizing the addresses of Actors is usually modeled using mapping. The idea is to use an Actor system to perform the mapping to the actual Actor addresses. For example, on a computer the memory structure of the computer can be modeled as an Actor system that does the mapping. In the case of SOAP addresses, it's modeling the DNS and rest of the URL mapping.

Contrast with other models of message-passing concurrency

Robin Milner's initial published work on concurrency[19] was also notable in that it was not based on composing sequential processes. His work differed from the Actor model because it was based on a fixed number of processes of fixed topology communicating numbers and strings using synchronous communication. The original Communicating Sequential Processes model[20] published by Tony Hoare differed from the Actor model because it was based on the parallel composition of a fixed number of sequential processes connected in a fixed topology, and communicating using synchronous message-passing based on process names (see Actor model and process calculi history). Later versions of CSP abandoned communication based on process names in favor of anonymous communication via channels, an approach also used in Milner's work on the Calculus of Communicating Systems and the π-calculus.

These early models by Milner and Hoare both had the property of bounded nondeterminism. Modern, theoretical CSP ([Hoare 1985] and [Roscoe 2005]) explicitly provides unbounded nondeterminism.

Current importance

Forty years after the publication of Moore's Law, hardware development is furthering local and nonlocal massive concurrency. Local concurrency is enabled by new hardware for 64-bit multi-core (Platform 2015 Unveiled at IDF Spring 2005) microprocessors, multi-chip modules, and high performance interconnect. Nonlocal concurrency is being enabled by new hardware for wired and wireless broadbandpacket switched communications (see Wi-Fi and Ultra wideband). Both local and nonlocal storage capacities are growing exponentially.

According to Hewitt [2006], the Actor model faces issues in computer and communications architecture, concurrent programming languages, and Web Services including the following:

	
	scalability: the challenge of scaling up concurrency both locally and nonlocally.

	transparency: bridging the chasm between local and nonlocal concurrency. Transparency is currently a controversial issue. Some researchers[who?] have advocated a strict separation between local concurrency using concurrent programming languages (e.g. Java and C#) from nonlocal concurrency using SOAP for Web services. Strict separation produces a lack of transparency that causes problems when it is desirable/necessary to change between local and nonlocal access to Web Services (see distributed computing).

	inconsistency: Inconsistency is the norm because all very large knowledge systems about human information system interactions are inconsistent. This inconsistency extends to the documentation and specifications of very large systems (e.g. Microsoft Windows software, etc.), which are internally inconsistent.

Many of the ideas introduced in the Actor model are now also finding application in multi-agent systems for these same reasons [Hewitt 2006b 2007b]. The key difference is that agent systems (in most definitions) impose extra constraints upon the Actors, typically requiring that they make use of commitments and goals.

The Actor model is also being applied to client cloud computing [21].

Actor researchers

Important contributions to the semantics of Actors have been made by: Gul Agha, Beppe Attardi, Henry Baker, Will Clinger, Irene Greif, Carl Hewitt, Carl Manning, Ian Mason, Ugo Montanari, Maria Simi, Scott Smith, Carolyn Talcott, Prasanna Thati, and Aki Yonezawa.

Important contributions to the implementation of Actors have been made by: Bill Athas, Russ Atkinson, Beppe Attardi, Henry Baker, Gerry Barber, Peter Bishop, Nanette Boden, Jean-Pierre Briot, Bill Dally, Peter de Jong, Jessie Dedecker, Travis Desell, Ken Kahn, Carl Hewitt, Henry Lieberman, Carl Manning, Tom Reinhardt, Chuck Seitz, Richard Steiger, Dan Theriault, Mario Tokoro, Carlos Varela, Darrell Woelk.

Programming with Actors

A number of different programming languages employ the Actor model or some variation of it. These languages include:

Early Actor programming languages

	
	Act 1, 2 and 3 [22][23]

	Acttalk [24]

	Ani [25]

	Cantor [26]

	Rosette[27]

Later Actor programming languages

	ABCL

	ActorScript

	AmbientTalk[28]

	Axum[29]

	E

	Erlang

	Io

	Ptolemy Project

	Rebeca Modeling Language

	Reia

	SALSA[30]

	Scala[31][32]

Actor libraries and frameworks

Actor libraries or frameworks have also been implemented to permit actor-style programming in languages that don't have actors built-in. Among these frameworks are:

	
	Akka - A Java and Scala framework with Actors, STM & Transactors

	Ateji PX - Ateji PX provides an Actor Model for Java

	Korus - A Java parallel and distributed programming framework based on Actor Model

	Kilim - a message-passing framework for Java[33]

	ActorFoundry - a Java library for Actor programming

	Retlang for .NET

	Jetlang for Java

	Haskell-Actor for Haskell

	GPars - the concurrency and actor library for Groovy (was GParallelizer)

	PARLEY - The Python Actor Runtime Library

	Termite Scheme - provides Erlang-like concurency for the Gambit implementation of Scheme

	Theron - provides an Actor Model for C++.

See also

	Data flow

	Special relativity (specifically, Relativity of simultaneity) and Quantum physics, for some physical motivation for the Actor model theory

	Multi-agent system

	Neural networks

	Scientific Community Metaphor

	Communicating sequential processes

References

	
	^ Carl Hewitt; Peter Bishop and Richard Steiger (1973). A Universal Modular Actor Formalism for Artificial Intelligence. IJCAI.

	^ a b c d William Clinger (June 1981). Foundations of Actor Semantics. Mathematics Doctoral Dissertation. MIT. https://dspace.mit.edu/handle/1721.1/6935.

	^ a b Irene Greif (August 1975). Semantics of Communicating Parallel Processes. EECS Doctoral Dissertation. MIT.

	^ a b Henry Baker; Carl Hewitt (August 1977). Laws for Communicating Parallel Processes. IFIP.

	^ a b c Gul Agha (1986). Actors: A Model of Concurrent Computation in Distributed Systems. Doctoral Dissertation. MIT Press. https://dspace.mit.edu/handle/1721.1/6952.

	^ Carl Hewitt. Viewing Control Structures as Patterns of Passing Messages Journal of Artificial Intelligence. June 1977.

	^ a b Gul Agha; Ian Mason, Scott Smith, and Carolyn Talcott (January 1993). "A Foundation for Actor Computation". Journal of Functional Programming.

	^ Carl Hewitt (2006-04-27) (PDF). What is Commitment? Physical, Organizational, and Social. COIN@AAMAS. http://www.pcs.usp.br/~coin-aamas06/10_commitment-43_16pages.pdf.

	^ Mauro Gaspari; Gianluigi Zavattaro (May 1997). An Algebra of Actors. Technical Report UBLCS-97-4. University of Bologna.

	^ M. Gaspari; G. Zavattaro (1999). An Algebra of Actors. Formal Methods for Open Object Based Systems.

	^ Gul Agha; Prasanna Thati (2004) (PDF). An Algebraic Theory of Actors and Its Application to a Simple Object-Based Language. From OO to FM (Dahl Festschrift) LNCS 2635. http://formal.cs.uiuc.edu/papers/ATactors_festschrift.pdf.

	^ John Darlington; Y. K. Guo (1994). Formalizing Actors in Linear Logic. International Conference on Object-Oriented Information Systems.

	^ Kay, Alan (March 1993). "The Early History of Smalltalk" (PDF). ACM SIGPLAN 28 (3): 69–75. doi:10.1145/155360.155364. http://www.smalltalk.org/downloads/papers/SmalltalkHistoryHOPL.pdf.

	^ Brinch-Hansen, Per (2002). The Origins of Concurrent Programming: From Semaphores to Remote Procedure Calls. Springer. ISBN 978-0387954011.

	^ Per Brinch Hansen, Monitors and Concurrent Pascal: A Personal History, Comm. ACM 1996, pp 121-172

	^ C.A.R. Hoare, Monitors: An Operating System Structuring Concept, Comm. ACM Vol. 17, No. 10. October 1974, pp. 549-557

	^ Brinch Hansen, P., Operating System Principles, Prentice-Hall, July 1973.

	^ Frederick Knabe. A Distributed Protocol for Channel-Based Communication with Choice PARLE 1992.

	^ Robin Milner. Processes: A Mathematical Model of Computing Agents in Logic Colloquium 1973.

	^ C.A.R. Hoare. Communicating sequential processes CACM. August 1978.

	^ Carl Hewitt (September/October 2008). "ORGs for Scalable, Robust, Privacy-Friendly Client Cloud Computing". IEEE Internet Computing 12 (5).

	^ Henry Lieberman (June 1981). A Preview of Act 1. MIT AI memo 625. ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-625.pdf.

	^ Henry Lieberman (June 1981). Thinking About Lots of Things at Once without Getting Confused: Parallelism in Act 1. MIT AI memo 626. ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-626.pdf.

	^ Jean-Pierre Briot. Acttalk: A framework for object-oriented concurrent programming-design and experience 2nd France-Japan workshop. 1999.

	^ Ken Kahn. A Computational Theory of Animation MIT EECS Doctoral Dissertation. August 1979.

	^ William Athas and Nanette Boden Cantor: An Actor Programming System for Scientific Computing in Proceedings of the NSF Workshop on Object-Based Concurrent Programming. 1988. Special Issue of SIGPLAN Notices.

	^ Darrell Woelk. Developing InfoSleuth Agents Using Rosette: An Actor Based Language Proceedings of the CIKM '95 Workshop on Intelligent Information Agents. 1995.

	^ Dedecker J., Van Cutsem T., Mostinckx S., D'Hondt T., De Meuter W. Ambient-oriented Programming in AmbientTalk. In “Proceedings of the 20th European Conference on Object-Oriented Programming (ECOOP), Dave Thomas (Ed.), Lecture Notes in Computer Science Vol. 4067, pp. 230-254, Springer-Verlag.”, 2006

	^ http://www.eweek.com/c/a/Application-Development/Microsoft-Cooking-Up-New-Parallel-Programming-Language-Axum-868670/

	^ Carlos Varela and Gul Agha (2001). "Programming Dynamically Reconfigurable Open Systems with SALSA". ACM SIGPLAN Notices. OOPSLA’2001 Intriguing Technology Track Proceedings 36.

	^ Philipp Haller and Martin Odersky (September 2006) (PDF). Event-Based Programming without Inversion of Control. Proc. JMLC 2006. http://lampwww.epfl.ch/~odersky/papers/jmlc06.pdf.

	^ Philipp Haller and Martin Odersky (January 2007) (PDF). Actors that Unify Threads and Events. Technical report LAMP 2007. http://lamp.epfl.ch/~phaller/doc/haller07coord.pdf.

	^ Srinivasan, Sriram; Alan Mycroft (2008). "Kilim: Isolation-Typed Actors for Java" (PDF). European Conference on Object Oriented Programming ECOOP 2008. Cyprus. http://www.malhar.net/sriram/kilim/kilim_ecoop08.pdf. Retrieved 2008-07-24. .

Further reading

	
	Stephen Kleene Recursive Predicates and Quantifiers American Mathematical Society Transactions. 1943.

	Paul Baran. On Distributed Communications Networks IEEE Transactions on Communications Systems. March 1964.

	Peter Landin. A Generalization of Jumps and Labels Report. UNIVAC Systems Programming Research. August 1965. Reprinted in Higher Order and Symbolic Computation. 1998.

	Edsger Dijkstra Solution of a Problem in Concurrent Programming Control CACM. 1965.

	Jack Dennis and Earl Van Horn. Programming Semantics for Multiprogrammed Computations CACM. March 1966.

	Ole-Johan Dahl and Kristen Nygaard. Class and subclass declarations IFIP TC2 Conference on Simulation Programming Languages. May 1967.

	Carl Hewitt. PLANNER: A Language for Proving Theorems in Robots IJCAI 1969

	William A. Woods. Transition network grammars for natural language analysis CACM. 1970.

	Terry Winograd. Procedures as a Representation for Data in a Computer Program for Understanding Natural Language MIT AI TR-235. January 1971.

	Carl Hewitt. Procedural Embedding of Knowledge In Planner IJCAI 1971.

	G.M. Birtwistle, Ole-Johan Dahl, B. Myhrhaug and Kristen Nygaard. SIMULA Begin Auerbach Publishers Inc, 1973.

	Daniel Bobrow: A Model for Control Structures for Artificial Intelligence Programming Languages IJCAI 1973.

	Carl Hewitt, et al. Actor Induction and Meta-evaluation Conference Record of ACM Symposium on Principles of Programming Languages, January 1974.

	Carl Hewitt, et al. Behavioral Semantics of Nonrecursive Control Structure Proceedings of Colloque sur la Programmation, April 1974.

	Irene Greif and Carl Hewitt. Actor Semantics of PLANNER-73 Conference Record of ACM Symposium on Principles of Programming Languages. January 1975.

	Carl Hewitt. How to Use What You Know IJCAI. September, 1975.

	Alan Kay and Adele Goldberg. Smalltalk-72 Instruction Manual Xerox PARC Memo SSL-76-6. May 1976.

	Edsger Dijkstra. A discipline of programming Prentice Hall. 1976.

	Carl Hewitt and Henry Baker Actors and Continuous Functionals Proceeding of IFIP Working Conference on Formal Description of Programming Concepts. August 1–5, 1977.

	Henry Baker and Carl Hewitt The Incremental Garbage Collection of Processes Proceeding of the Symposium on Artificial Intelligence Programming Languages. SIGPLAN Notices 12, August 1977.

	Gilles Kahn and David MacQueen. Coroutines and networks of parallel processes IFIP. 1977

	Aki Yonezawa Specification and Verification Techniques for Parallel Programs Based on Message Passing Semantics MIT EECS Doctoral Dissertation. December 1977.

	Henry Baker. Actor Systems for Real-Time Computation MIT EECS Doctoral Dissertation. January 1978.

	Carl Hewitt and Russ Atkinson. Synchronization in Actor Systems Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages. 1977

	Carl Hewitt and Russ Atkinson. Specification and Proof Techniques for Serializers IEEE Journal on Software Engineering. January 1979.

	Ken Kahn. A Computational Theory of Animation MIT EECS Doctoral Dissertation. August 1979.

	Carl Hewitt, Beppe Attardi, and Henry Lieberman. Delegation in Message Passing Proceedings of First International Conference on Distributed Systems Huntsville, AL. October 1979.

	Nissim Francez, C.A.R. Hoare, Daniel Lehmann, and Willem-Paul de Roever. Semantics of nondetermiism, concurrency, and communication Journal of Computer and System Sciences. December 1979.

	George Milne and Robin Milner. Concurrent processes and their syntax JACM. April 1979.

	Russ Atkinson. Automatic Verification of Serializers MIT Doctoral Dissertation. June, 1980.

	Bill Kornfeld and Carl Hewitt. The Scientific Community Metaphor IEEE Transactions on Systems, Man, and Cybernetics. January 1981.

	Bill Kornfeld. Parallelism in Problem Solving MIT EECS Doctoral Dissertation. August 1981.

	Daniel Theriault. A Primer for the Act-1 Language MIT AI memo 672. April 1982.

	Daniel Theriault. Issues in the Design and Implementation of Act 2 MIT AI technical report 728. June 1983.

	Henry Lieberman. An Object-Oriented Simulator for the Apiary Conference of the American Association for Artificial Intelligence, Washington, D. C., August 1983

	Carl Hewitt and Peter de Jong. Analyzing the Roles of Descriptions and Actions in Open Systems Proceedings of the National Conference on Artificial Intelligence. August 1983.

	Carl Hewitt and Henry Lieberman. Design Issues in Parallel Architecture for Artificial Intelligence MIT AI memo 750. Nov. 1983.

	Daniel Ingalls. The Evolution of the Smalltalk Virtual Machine in Smalltalk-80: Bits of History, Words of Advice. Addison Wesley. 1983.

	Hal Abelson, Gerald Jay Sussman and Julie Sussman, Structure and Interpretation of Computer Programs MIT Press and McGraw-Hill, 1985.

	C.A.R. Hoare. Communicating Sequential Processes Prentice Hall. 1985.

	Carl Hewitt. The Challenge of Open Systems Byte Magazine. April 1985. Reprinted in The foundation of artificial intelligence---a sourcebook Cambridge University Press. 1990.

	Carl Manning. Traveler: the actor observatory ECOOP 1987. Also appears in Lecture Notes in Computer Science, vol. 276.

	William Athas and Charles Seitz Multicomputers: message-passing concurrent computers IEEE Computer August 1988.

	William Athas and Nanette Boden Cantor: An Actor Programming System for Scientific Computing in Proceedings of the NSF Workshop on Object-Based Concurrent Programming. 1988. Special Issue of SIGPLAN Notices.

	Jean-Pierre Briot. From objects to actors: Study of a limited symbiosis in Smalltalk-80 Rapport de Recherche 88-58, RXF-LITP, Paris, France, September 1988

	William Dally and Wills, D. Universal mechanisms for concurrency PARLE 1989.

	W. Horwat, A. Chien, and W. Dally. Experience with CST: Programming and Implementation PLDI. 1989.

	Carl Hewitt. Towards Open Information Systems Semantics Proceedings of 10th International Workshop on Distributed Artificial Intelligence. October 23–27, 1990. Bandera, Texas.

	Akinori Yonezawa, Ed. ABCL: An Object-Oriented Concurrent System MIT Press. 1990.

	K. Kahn and Vijay A. Saraswat, "Actors as a special case of concurrent constraint (logic) programming", in SIGPLAN Notices, October 1990. Describes Janus.

	Carl Hewitt. Open Information Systems Semantics Journal of Artificial Intelligence. January 1991.

	Carl Hewitt and Jeff Inman. DAI Betwixt and Between: From "Intelligent Agents" to Open Systems Science IEEE Transactions on Systems, Man, and Cybernetics. Nov./Dec. 1991.

	Carl Hewitt and Gul Agha. Guarded Horn clause languages: are they deductive and Logical? International Conference on Fifth Generation Computer Systems, Ohmsha 1988. Tokyo. Also in Artificial Intelligence at MIT, Vol. 2. MIT Press 1991.

	William Dally, et al. The Message-Driven Processor: A Multicomputer Processing Node with Efficient MechanismsIEEE Micro. April 1992.

	S. Miriyala, G. Agha, and Y.Sami. Visulatizing actor programs using predicate transition nets Journal of Visual Programming. 1992.

	Alan Kay. The Early History of Smalltalk The second ACM conference on history of programming languages. 1993.

	Carl Hewitt and Carl Manning. Negotiation Architecture for Large-Scale Crisis Management AAAI-94 Workshop on Models of Conflict Management in Cooperative Problem Solving. Seattle, WA. Aug. 4, 1994.

	Darrell Woelk. Developing InfoSleuth Agents Using Rosette: An Actor Based Language Proceedings of the CIKM '95 Workshop on Intelligent Information Agents. 1995.

	Carl Hewitt and Carl Manning. Synthetic Infrastructures for Multi-Agency Systems Proceedings of ICMAS '96. Kyoto, Japan. December 8–13, 1996.

	S. Frolund. Coordinating Distributed Objects: An Actor-Based Approach for Synchronization MIT Press. November 1996.

	W. Kim. ThAL: An Actor System for Efficient and Scalable Concurrent Computing PhD thesis. University of Illinois at Urbana Champaign. 1997.

	Jean-Pierre Briot. Acttalk: A framework for object-oriented concurrent programming-design and experience 2nd France-Japan workshop. 1999.

	N. Jamali, P. Thati, and G. Agha. An actor based architecture for customizing and controlling agent ensembles IEEE Intelligent Systems. 14(2). 1999.

	Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn, Henrik Nielsen, Satish Thatte, Dave Winer. Simple Object Access Protocol (SOAP) 1.1 W3C Note. May 2000.

	M. Astley, D. Sturman, and G. Agha. Customizable middleware for modular distributed software CACM. 44(5) 2001.

	Carlos Varela. Worldwide Computing with Universal Actors: Linguistic Abstractions for Naming, Migration, and Coordination PhD thesis. U. of Illinois at Urbana-Champaign. 2001.

	N. Venkatasubramanian, C. Talcott, and G. Agha. A formal model for reasoning about adaptive QoS-enabled middleware Formal Methods Europe (FME). 2001.

	Edward Lee, S. Neuendorffer, and M. Wirthlin. Actor-oriented design of embedded hardware and software systems Journal of circuits, systems, and computers. 2002.

	P. Thati, R. Ziaei, and G. Agha. A Theory of May Testing for Actors Formal Methods for Open Object-based Distributed Systems. March 2002.

	P. Thati, R. Ziaei, and G. Agha. A theory of may testing for asynchronous calculi with locality and no name matching Algebraic Methodology and Software Technology. Springer Verlag. September 2002. LNCS 2422.

	Gul Agha and Carlos Varela. Worldwide Computing Middleware Practical Handbook on Internet Computing. CRC Press, 2004.

	Stephen Neuendorffer. Actor-Oriented Metaprogramming PhD Thesis. University of California, Berkeley. December, 2004

	Carl Hewitt (2006a) The repeated demise of logic programming and why it will be reincarnated What Went Wrong and Why: Lessons from AI Research and Applications. Technical Report SS-06-08. AAAI Press. March 2006.

	Carl Hewitt (2006b) What is Commitment? Physical, Organizational, and Social COIN@AAMAS. April 27, 2006b.

	Carl Hewitt (2007a) What is Commitment? Physical, Organizational, and Social (Revised) Pablo Noriega .et al. editors. LNAI 4386. Springer-Verlag. 2007.

	Carl Hewitt (2007b) Large-scale Organizational Computing requires Unstratified Paraconsistency and Reflection COIN@AAMAS'07.

External links

	
	A now dated set of speculations by Paul Mackay can be found at Why has the actor model not succeeded?

	JavAct - a Java library for programming concurrent, distributed, and mobile applications using the actor model (and open implementation principles).

	Functional Java - a Java library of that includes an implementation of concurrent actors with code examples in standard Java and Java 7 BGGA style.

	ActorFoundry - a Java-based library for Actor programming. The familiar Java syntax, an ant build file and a bunch of example make the entry barrier very low.

	ActiveJava - a prototype Java language extension for Actor programming.

In computer science, a non-blocking algorithm ensures that threads competing for a shared resource do not have their execution indefinitely postponed by mutual exclusion. A non-blocking algorithm is lock-free if there is guaranteed system-wide progress; wait-free if there is also guaranteed per-thread progress.

Literature up to the turn of the 21st century used "non-blocking" synonymously with lock-free. However, since 2003,[1] the term has been weakened to only prevent progress-blocking interactions with a preemptive scheduler. In modern usage, therefore, an algorithm is non-blocking if the suspension of one or more threads will not stop the potential progress of the remaining threads. They are designed to avoid requiring a critical section. Often, these algorithms allow multiple processes to make progress on a problem without ever blocking each other. For some operations, these algorithms provide an alternative to locking mechanisms.

Contents

[hide]

	1 Motivation

	2 Implementation

	3 Wait-freedom

	4 Lock-freedom

	5 Obstruction-freedom

	6 See also

	7 References

	8 External links

[edit] Motivation

Main article: The problems with locks

The traditional approach to multi-threaded programming is to use locks to synchronize access to shared resources. Synchronization primitives such as mutexes, semaphores, and critical sections are all mechanisms by which a programmer can ensure that certain sections of code do not execute concurrently if doing so would corrupt shared memory structures. If one thread attempts to acquire a lock that is already held by another thread, the thread will block until the lock is free.

Blocking a thread is undesirable for many reasons. An obvious reason is that while the thread is blocked, it cannot accomplish anything. If the blocked thread is performing a high-priority or real-time task, it is highly undesirable to halt its progress. Other problems are less obvious. Certain interactions between locks can lead to error conditions such as deadlock, livelock, and priority inversion. Using locks also involves a trade-off between coarse-grained locking, which can significantly reduce opportunities for parallelism, and fine-grained locking, which requires more careful design, increases overhead and is more prone to bugs.

Non-blocking algorithms are also safe for use in interrupt handlers: even though the preempted thread cannot be resumed, progress is still possible without it. In contrast, global data structures protected by mutual exclusion cannot safely be accessed in a handler, as the preempted thread may be the one holding the lock.

Non-blocking algorithms have the potential to prevent priority inversion, as no thread is forced to wait for a suspended thread to complete. However, as livelock is still possible, threads have to wait when they encounter contention; hence, priority inversion is still possible depending upon the contention management system used. Lock-free algorithms, below, avoid priority inversion.

[edit] Implementation

With few exceptions, non-blocking algorithms use atomic read-modify-write primitives that the hardware must provide, the most notable of which is compare and swap (CAS). Critical sections are almost always implemented using standard interfaces over these primitives. Until recently, all non-blocking algorithms had to be written "natively" with the underlying primitives to achieve acceptable performance. However, the emerging field of software transactional memory promises standard abstractions for writing efficient non-blocking code.

Much research has also been done in providing basic data structures such as stacks, queues, sets, and hash tables. These allow programs to easily exchange data between threads asynchronously.

Additionally, some data structures are weak enough to be implemented without special atomic primitives. These exceptions include:

	
	single-reader single-writer ring buffer FIFO

	Read-copy-update with a single writer and any number of readers. (The readers are wait-free; the writer is usually wait-free, until it needs to reclaim memory).

[edit] Wait-freedom

Wait-freedom is the strongest non-blocking guarantee of progress, combining guaranteed system-wide throughput with starvation-freedom. An algorithm is wait-free if every operation has a bound on the number of steps the algorithm will take before the operation completes.

It was shown in the 1980s[2] that all algorithms can be implemented wait-free, and many transformations from serial code, called universal constructions, have been demonstrated. However, the resulting performance does not in general match even naïve blocking designs. It has also been shown[3] that the widely-available atomic conditional primitives, CAS and LL/SC, cannot provide starvation-free implementations of many common data structures without memory costs growing linearly in the number of threads. Wait-free algorithms are therefore rare, both in research and in practice.

[edit] Lock-freedom

Lock-freedom allows individual threads to starve but guarantees system-wide throughput. An algorithm is lock-free if it satisfies that when the program threads are run sufficiently long at least one of the threads make progress (for some sensible definition of progress). All wait-free algorithms are lock-free.

In general, a lock-free algorithm can run in four phases: completing one's own operation, assisting an obstructing operation, aborting an obstructing operation, and waiting. Completing one's own operation is complicated by the possibility of concurrent assistance and abortion, but is invariably the fastest path to completion.

The decision about when to assist, abort or wait when an obstruction is met is the responsibility of a contention manager. This may be very simple (assist higher priority operations, abort lower priority ones), or may be more optimized to achieve better throughput, or lower the latency of prioritized operations.

Correct concurrent assistance is typically the most complex part of a lock-free algorithm, and often very costly to execute: not only does the assisting thread slow down, but thanks to the mechanics of shared memory, the thread being assisted will be slowed, too, if it is still running.

[edit] Obstruction-freedom

Obstruction-freedom is possibly the weakest natural non-blocking progress guarantee. An algorithm is obstruction-free if at any point, a single thread executed in isolation (i.e., with all obstructing threads suspended) for a bounded number of steps will complete its operation. All lock-free algorithms are obstruction-free.

Obstruction-freedom demands only that any partially-completed operation can be aborted and the changes made rolled back. Dropping concurrent assistance can often result in much simpler algorithms that are easier to validate. Preventing the system from continually live-locking is the task of a contention manager.

Obstruction-freedom is also called optimistic concurrency control.

Some obstruction-free algorithms use a pair of "consistency markers" in the data structure. Processes reading the data structure first read one consistency marker, then read the relevant data into an internal buffer, then read the other marker, and then compare the markers. The data is consistent if the two markers are identical. Markers may be non-identical when the read is interrupted by another process updating the data structure. In such a case, the process discards the data in the internal buffer and tries again.

[edit] See also

	ABA problem

	Compare-and-swap

	Concurrency control

	Deadlock

	Linearizability

	Load-Link/Store-Conditional

	Lock (software engineering)

	Memory barrier

	Mutual exclusion

	Pre-emptive multitasking

	Priority inversion

	Read-copy-update

	Resource starvation

	Room synchronization

	Software transactional memory

	Partitioned global address space

[edit] References

	
	^ M. Herlihy, V. Luchangco and M. Moir. "Obstruction-Free Synchronization: Double-Ended Queues as an Example." 23rd International Conference on Distributed Computing Systems, 2003, p.522.

	^ Maurice P. Herlihy. "Impossibility and universality results for wait-free synchronization" Proceedings of the Seventh Annual ACM Symposium on Principles of Distributed Computing, 1988, pp. 276 - 290.

	^ F. Fich, D. Hendler, N. Shavit. "On the inherent weakness of conditional synchronization primitives." 23rd Annual ACM Symposium on Principles of Distributed Computing, 2004, pp. 80-87.

[edit] External links

	
	Article "Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue Algorithms" by Maged M. Michael and Michael L. Scott

	Discussion "Communication between Threads, without blocking"

	Survey "Some Notes on Lock-Free and Wait-Free Algorithms" by Ross Bencina

	java.util.concurrent.atomic – supports lock-free and thread-safe programming on single variables

	System.Threading.Interlocked - Provides atomic operations for variables that are shared by multiple threads (.NET Framework)

	The Jail-Ust Container Library

	Practical lock-free data structures

	Thesis "Efficient and Practical Non-Blocking Data Structures" (1414 KB) by Håkan Sundell

	WARPing - Wait-free techniques for Real-time Processing

	Non-blocking Synchronization: Algorithms and Performance Evaluation. (1926 KB) by Yi Zhang

	"Design and verification of lock-free parallel algorithms" by Hui Gao

	"Asynchronous Data Sharing in Multiprocessor Real-Time Systems Using Process Consensus" by Jing Chen and Alan Burns

	Discussion "lock-free versus lock-based algorithms"

	Atomic Ptr Plus Project - collection of various lock-free synchronization primitives

	AppCore: A Portable High-Performance Thread Synchronization Library - An Effective Marriage between Lock-Free and Lock-Based Algorithms

	WaitFreeSynchronization and LockFreeSynchronization at the Portland Pattern Repository

	Multiplatform library with atomic operations

	A simple C++ lock-free LIFO implementation

	Concurrent Data Structures - C++ library of various lock-free algorithms and GCs

	1024cores - a site devoted to lock-free, wait-free, obstruction-free and just scalable non-blocking synchronization algorithms and related topics

Case Study: MultiLane - a concurrent blocking multiset

This is about the MultiLane : a concurrent blocking multiset paper. Go and read it first, it's just 4 pages including references and an appendix.

Ok, I did not expect that you do that anyway :)

It describes a way to improve scalability of a producer-consumer system by means of partitioning. Basically, it presents a way to wrap any producer-consumer queue in order to get a queue with the same properties but better scalability. Here is how it does it:

There is basically no restrictions of underlying queue, it can be any sort of queue: bounded/unbounded, support one or several producers/consumers, etc. The resulting queue will share the same properties.

Input demultiplexer and output multiplexer are no more than atomic variables, and tickets are obtained with atomic_fetch_add(1):

void multilane_enqueue(multilane_t* m, void* data)

{

unsigned ticket = atomic_fetch_add(&m->enqueue_cursor, 1, memory_order_relaxed);

underlying_queue_t* queue = &m->queues[ticket % m->count];

underlying_enqueue(queue, data);

}

void* multilane_dequeue(multilane_t* m)

{

unsigned ticket = atomic_fetch_add(&m->dequeue_cursor, 1, memory_order_relaxed);

underlying_queue_t* queue = &m->queues[ticket % m->count];

return underlying_dequeue(queue);

}

By the way, Intel TBB concurrent queue uses exactly the same trick.

And note that the technique is quite general, so that one can use it, for example, to balance workload between external web-services:

I have mixed feelings about the technique. On one hand, it uses partitioning (decentralization) which is a good thing, and generally a right way to approach design of concurrent systems. Moreover, it actually improves performance. Below is a performance report of a synthetic microbenchmark running on UltraSPARC T2 machine (8 cores, 16 pipelines, 64 hardware threads):

So what's wrong with it?

Provided one has a heavy contended mutable data structure, it's a false route to try to patch the hotspot in place. There is no way to make a centralized heavy contended data structure scalable. Period. In some sense it resembles elimination-backoff stack algorithm. Basically, if one has that level of contention (there are always a few threads trying do something with a data structure), sorry, the architecture is just incompatible with parallelism. Yes, of course, there are some ways to improve the situation somewhat locally, and they may even show good results... if you compare them to the previous bad-bad results. But impartially they are still bad.

The only way to solve the problem is to escalate it to the architecture level. Let's see what we can do.

The authors mention resource pools. A better, really distributed, way to create a pool may be to establish per-thread pools, so that a thread pushes and pops resources to own pool. Only if the pool is empty on pop, a thread randomly queries pools of other threads:

An alternative design is to use per-thread pools along with a centralized one which is used solely for resource "surplus". That is, per-thread pools are strictly single-threaded; if a per-thread pool reaches a threshold, some resources are offloaded to the centralized pool; if a thread is out of resources it queries the centralized pool:

As for producer-consumer scenarios, we can introduce a notion of persistent binding between producers and consumers. That is, each producer has an associated SPMC queue (which is already better than MPMC queue) and always pushes messages to it; each consumer has one or several associated producers, and checks their queues first; if they are empty if falls back to random/sequential checking of other queues.

However, it's frequently a bad idea to strictly divide threads to producer and consumers, it's usually a better idea to have just worker threads and let them do whatever is the most important job at the moment, that is, let them produce, consume or whatever. And then we can apply the same approach with per-thread queues as I suggested for resource pooling - when a thread acts as a producer it pushes a message to own queue, then it switches to consuming and pops a message from the same queue.

There is one more interesting point in the paper that I want to focus your attention on:

Interestingly, we see that LinkedTransferQueue is faster than its MultiLane counterpart with 16 producer threads and 4 consumer threads. Further investigation showed that many messages were simultaneously inflight under the MultiLane form, and that garbage collection activity dominated the measurement interval. This behavior arises because the underlying collection is unbounded and the underlying implementation allocates ”container” nodes for each message...

Never ever use unbounded queues in producer-consumer scenarios. The question deserves a separate article, but long story short is: a bounded queue behaves the same as an unbounded one while everything goes as supposed, and saves you from severe performance degradation or OOM otherwise.

The bottom line.

The MultiLane technique can be used to somewhat reduce contention on a centralized data structure, and from this point of view it's a useful trick in your concurrent toolbox. However, in an ideal world it's better to approach the problem on the architectural level.

You may also read some my comments regarding details of the approach in the Dave's blog.

Parallel Disk IO

Below is a description of the parallel disk IO subsystem that I used in my Wide-Finder 2 entry, however the solution is pretty general and highlights the main principles. The task is to read and process 45GB webserver logfile (218 million lines). The machine is Sun Fire T2000 with UltraSPARC T1 processor (32 hardware threads) and 32GB RAM running Solaris 10U4. IO subsystem is 4 "pretty fast disks" with single ZFS filesystem.

First of all, we need to determine what is the most efficient OS mechanism for disk IO, it will significantly affect programming model as well. I've considered plain blocking read(), mmap() and aio. In singlethreaded mode aio gives the best results (not surprisingly, because it allows to interleave IO and processing). However, in multithreaded mode plain old blocking read() (pread64()) turned to be the fastest. Memory mapped IO is slower in both cases (there are other people who case to the same conclusion: here and here).

So, how can we approach it? The first naive approach is to organize a pipeline with 2 stages: reading and processing:

In order to prevent resource under-subscription for sure, we need PROCESSOR_COUNT threads for each stage. This model has the following drawbacks:

- It will lead to CPU over-subscription if the file is cached

- It may lead to disk over-subscription

- All data blocks are passed via FIFO queue, which is a perfect way to cool data in cache

- If processing can't keep up with reading, the queue will be almost always full and will consume substantial amount of memory

- We need to create more threads than is ever required, and excessive reading threads won't be parked

In order to mitigate some drawbacks some contestants create small fixed number of IO threads (8-12, requires manual tuning), however it leads to significantly suboptimal processing if a file is cached.

Another possible approach is to let each thread read and process blocks independently, below is a thread state machine:

In order to prevent resource under-subscription this model requires PROCESSOR_COUNT + MIN_IO_THREADS threads in total. It mitigates over-subscription somehow, and now the system won't consume excessive amounts of memory for buffering. However it still has some drawbacks:

- It over-subscribes either CPU or disk

- Excessive threads are not parked

and the most serious:

- Without buffering it will lead to temporal disk underutilization (no pending read requests) followed by CPU underutilization (all thread are blocked on IO)

So, I am going to combine both approaches and take everything under manual control to prevent all kinds of undesirable things. But first things first. and first we need to determine external factors we want to account for, and what are good/bad things we want to encourage/prevent.

External factors are:

- The file can be cached or not (or partially cached), if the file is cached then disk IO effectively becomes lightweight CPU processing

- Processing can be faster or slower than reading

- There can be other processes that contend for CPU and/or disk

- The hardware can be modestly parallel (1-2 cores), or highly parallel (dozens of cores)

- The disks can be HDD, SSD, RAID

What we want to encourage/prevent:

- Read the file sequentially to the extent possible - it's crucial for HDD disks

- Keep up at least MIN_IO_THREADS pending reads always. If an application is IO bound, we can't afford disk idling

- If the file is cached, occupy all otherwise idle processors with reading

- Do not over-subscribe processors

- Prefer processing over IO - final stages of processing should be preferred over initial one, because final stages produce useful work and relieve the system, while initial stages senselessly feed the system without producing any useful work. That is, initial stages are only the means to feed final stages.

- Prefer processing of a just read block, do not cool the data

- Prefer processing stage after completion of processing stage, most likely it has some data hot in cache

- Do control overloads, do not let excessive amount of data blocks senselessly hang in memory

- Park/unpark threads in LIFO order, they may have various associated data hot in cache

- Cache excessive data blocks in FIFO order - otherwise we can prevent application forward progress

- Automatic dynamic tuning to changing conditions (CPU, disk, other processes come and go, cached/uncached parts of the file) with hysteresis/sluggishness and stable equilibrium

Move on to The Solution

The Solution

The idea behind the solution is that we have a set of interchangeable worker threads, and each thread decides what is the most optimal thing to do next. Possible actions/states are: read, process and block. Also threads can unblock other threads if required and put/get data blocks to a buffer. A thread state machine looks as follows:

The data block queue has high and low watermarks. If it's size grows over high watermark, the system enters an "overflow" state. Then, when size goes down to low watermark, the system returns to normal state.

After BLOCK a thread always transitions to READ.

READ is the initial state, because we want a "fast start". After READ a thread transitions to PROCESS, if number of currently processing threads is less than number of processors (and of course, in this case the thread processes his just read block). Otherwise, if (number of reading threads < MIN_IO_THREADS) or (number of reading threads < number of processing threads), a thread returns to READ (and puts his just read block to the queue). Otherwise, a thread transitions to BLOCK (and puts his just read block to the queue).

After PROCESS a thread returns back to PROCESS (taking away a block from the queue), if (the queue is not empty) and (number of currently processing threads is less than number of processors). Otherwise, if (number of reading threads < MIN_IO_THREADS) or (number of reading threads < number of processing threads), a thread transitions to READ. Otherwise, a thread transitions to BLOCK.

During READ->PROCESS and PROCESS->PROCESS a thread decides to unblock another thread, if ((number of reading threads < MIN_IO_THREADS) or (number of reading threads < number of processing threads)) and (the system is not in overload state) and (there are blocked threads).

On implementation level there is a global context object that holds current position in the file, counters of reading and processing threads, LIFO stack of blocked threads, FIFO data block queue and other required state. The object is protected with a spin mutex. When a thread needs to decide on the next action, it acquires the mutex, then adjusts and analyzes the state, releases the mutex, and then blocks itself or unblocks other threads if required. Time under the mutex is negligible, there are just few conditional branches, few counter adjustments and few pointer manipulations.

Perhaps there are some minor details that I've missed in the description, but at large it's that way (check out the code as the best documentation). You may verify how the algorithm accounts for all the external factors, and how it encourages/prevents the good/bad things. The algorithm is not ideally optimal, because it's difficult to determine as to whether the file is cached or not, and contention for CPU/disk from other processes. However, automatically tunes to near optimal behavior.

To verify the behavior, I had collected a profile during processing of a partially cached 45GB file - first half is cached, and second half is on disk (click to enlarge):

where: 'active' is the sum of reading and processing threads, 'block' - number of blocked threads, 'read' - number of reading threads, 'proc' - number of processing threads, 'cached' - number of cached blocks in the queue.

As you may see, the behavior is quite steady and reasonable.

Here is enlarged profile for the cached part (click to enlarge). The system tries to maintain the following invariants: PROCESSOR_COUNT processing thread and at least MIN_IO_THREADS reading threads (the system need to maintain it, because it doesn't actually know that the file cached, it just orients on relative processing/read speeds, this causes slight CPU over-subscription). Almost no data blocks are cached, which is good (what for?). No threads are blocked, which is expected - when the file is cached we can go at full speed.

And here is enlarged profile for the uncached part (click to enlarge). What we see here? Most threads are parked, and since we park/unpark in LIFO order, they are kind of "deeply" parked - good. Reading thread are maintained on MIN_IO_THREADS level. There are so many processing threads as to handle data at disk reading speed. No cached blocks at all.

The bottom line. Do not create threads to perform specific functions, threads and functions are orthogonal - any thread can perform any function. Do not leave critical aspects of behavior to the chance, instead proactively force desired behavior. Let each thread decide what is currently the most important/optimal thing to do next.

You may also want to check out description of my Wide Finer 2 entry which uses the described IO subsystem.

External links:

Multithreaded File I/O - the article shows performance of multithreaded accesses to SATA, SCSI and RAID5 disks under various workloads.

Task Scheduling Strategies

There are 4 main strategies for a fine-grained distributed dynamic task scheduling:

	
	Work-stealing. That's a reactive asynchronous strategy. The essence: when a thread is out work, it randomly chooses a victim thread and asynchronously tries to steal some work from it.

	Work-requesting. That's a reactive synchronous strategy. The essence: when a thread is out of work, it randomly chooses a victim thread and sends a synchronous request to it; the victim receives the request, and sends some work back (if any).

	Work-distribution. That's a proactive synchronous strategy. The essence: during submission of a new work, it's divided and proactively distributed to some threads (idle or lightly loaded).

	Work-balancing. That's a proactive asynchronous strategy. The essence: dedicated thread (or potentially one of the worker threads) periodically collects information about load of all worker thread, then calculates optimal distribution of work, and then re-distributes work among them.

It's worth noting that a scheduler may employ several (or even all of the) above strategies. Reactive strategies (stealing and requesting) deal with inevitable dynamic load imbalance; but usually have very limited local information about a system's state, so make sub-optimal decisions. Proactive strategies (distribution and balancing), on the other hand, have information about a system's state, so make one-shot optimal scheduling decisions; but unable to cope with inevitable dynamic load imbalance.

A scheduler must employ at least one of the reactive strategies in order to cope with continuous and inevitable dynamic load imbalance, and optionally include one or both proactive strategies in order to cut down stealing/requesting costs. So, the general recipe for a scheduler is:

SCHEDULER = (STEALING ^ REQUESTING) [+DISTRIBUTION] [+BALANCING]

So we have to choose between work-stealing and work-requesting. Work-stealing has a serious advantage over work-requesting due to it's asynchronous nature: a thief thread is able to get some work, even if a victim thread is busy processing a user task or even de-scheduled by an OS. With work-requesting a thief thread is able to get some work only if a victim thread condescends to send it (which it is just unable to do if it is de-scheduled by an OS). While work-requesting is generally a bit simpler, because it's synchronous.

There are also 2 problems with work-stealing due to it's asynchronous nature. First, it inherently incurs some observable per-task overhead, because every pop operation from a thread's work deque must be synchronized with a potential asynchronous steal operation from another thread. Stealing is rare, but one still has to pay that price on every pop operation. The price is at least a single store-load style memory fence (MFENCE instruction for x86 architecture), or a single atomic RMW operation (LOCK prefixed instruction on x86). Here is an illustration of the problem:

Work-requesting is free of the problem. Task deque is completely local to a thread and requires no synchronization.

The second problem has similar nature and relates to a join phase of parallel algorithms. Traditional handling of task completion involves decrement of a pending child counter of a parent task. Due to asynchronous nature of work-stealing, the decrement has to be synchronized with other potential concurrent decrement operations. Here is an illustration of the problem:

Work-requesting is free of the problem. During execution of work-requesting protocol a victim thread can mark a parent task with a 'has_stolen_children' flag, and synchronization will be used only for such tasks. While great bulk of tasks will proceed without any synchronization.

However, I must emphasize that in general case work-stealing is more appropriate, because it is kind of more bullet-proof. You should employ work-requesting only if you know what you are doing... but you lose nothing for asking.

Work-distribution is relatively easy to implement and it may provide observable speedup in some contexts. For example, consider that we need to do per-element operation on an array. What we do is (1) determine number of currently idle worker threads, (2) evenly divide the array onto respective number of pieces, (3) directly assign the pieces to the threads. Now each thread has a good piece of work to start with. And if new worker threads will arrive and/or some worker threads finish sooner, work-stealing/requesting will take of that.

Another good example is IO dispatching. Consider that a thread discovers a batch of IO readiness via select()/poll(). A good next step is to divide the batch evenly among idle threads, and assign the pieces directly.

Work-balancing is usually more cumbersome to implement. The idea is that a thread periodically or episodically polls load of all worker threads, and then optimally re-distributes tasks between threads. However, it can be useful for systems with badly structured work DAGs and with unpredictable load. As far as I know, Erlang scheduler employs work balancing, because I guess it may be too costly to leave it work-stealing - too many costly steals which get too small pieces of work.

Don't afraid, it's not actually that difficult. Here you may see an example of a real working task scheduler.

Scheduler Example

Below is an example of a real working work-requesting task scheduler:

class worker_thread

{

// global index of current thread

size_t my_index;

// local tasks

deque<task_t> tasks;

// 1-element queue for work requests from other threads

atomic<size_t> steal_req;

// 1-element queue for work request acknowledges from other threads

atomic<size_t> steal_ack;

// main thread loop

void loop()

{

for (;;)

{

// while we have local work process it

while (tasks.size() != 0)

{

// pop task in LIFO order

task_t task = tasks.back();

tasks.pop_back();

// user processing

execute(task);

// check for steal requests from other threads

if (steal_req.load(memory_order_relaxed) != no_requests)

process_work_request();

}

// try to get some work from other threads

if (false == send_steal_request())

break;

}

}

void process_work_request()

{

// get thief descriptor

size_t thief_idx = steal_req.load(memory_order_relaxed);

worker_thread&; thief = get_thread(thief_idx);

if (tasks.size())

{

// pop task in FIFO order

task_t task = tasks.back();

tasks.pop_back();

// synchronous user processing

steal(task);

// give it to the thift

thief.tasks.push_back(task);

}

// notify the thief that the operation is completed

thief.steal_ack.store(1, memory_order_release);

}

bool send_steal_request()

{

for (;;)

{

// choose a victim

size_t victim_idx = choose_randomly();

worker_thread&; victim = get_thread(victim_idx);

// send a request to it (if it's not busy processing another request)

steal_ack.store(0, memory_order_relaxed);

size_t cmp = victim.steal_req.load(memory_order_relaxed);

for (;;)

{

if (cmp != (size_t)-1)

break;

if (victim.steal_req.compare_exchange_strong(cmp, my_index, memory_order_acq_rel))

break;

}

// request is sent?

if (cmp == no_requests)

{

// wait for ack

while (steal_ack.load(memory_order_acquire) == 0)

Sleep(0);

// check as to whether we got some work or not

if (tasks.size())

return true;

}

// termination condition

if (no_work_in_the_system())

return false;

}

}

};

Wide Finder 2

It's a write-up for my Wide Finder 2 entry. Here is the official problem statement for the Wide Finder 2 benchmark. Here is the infrastructure description, and here is the results table.

As of now, my parallel entry is #1 performance-wise. I've also submitted a single-threaded entry, which is of less interest, however it puts a distinctive landmark, so to say. You can download both entries at the bottom of the page.

First of all, you need to read Parallel Disk IO article, it describes parallel IO subsystem that I used in the entry. I take it out because I think it's interesting in itself.

So, the parallel IO subsystem feeds in parallel the rest of the system with fixed size data blocks (in the final run I used 8MB blocks). The blocks are not yet split into lines, and more importantly the contain line fragments at the borders.

I've tried several solutions for line fragment combining, and finally come up with the following solution. Since the file size and block size are known, number of line fragments is also known in advance. So I create a global combining array of pointers with a cell for each pair of line fragments. The array is initialized with NULLs. When a thread wants to combine a line fragment, it checks the appropriate cell in the array. If it's equal to NULL, then the thread tries to CAS it from NULL to own line fragment. If the CAS succeeds, then the thread has successfully offloaded obligation to combine the line. And if the cell is not equal to NULL or the CAS fails, then the thread takes the line fragment from the cell and combines it with the own line fragment:

For 45GB file and 8MB blocks there are ~5.6K cells, on a 64-bit platforms the array occupies only ~45KB of memory. What I like in this solution is that is synchronous, that is, the second thread always instantly finishes with the line. So there is no excessive buffering, and no deferred asynchronous work. By the way, buffers for line fragments are cached and reused on a per thread basis.

After line fragment combining a thread scans through the data block, detects line boundaries, parses lines, checks the regular expressions, and finally collects the statistics. For statistics collection I use per-thread hash maps, which along with per-thread memory allocators allow worker threads to work completely independently (which is a very good thing).

That's basically all interesting regarding processing. When the file is completely processed, worker threads copy their private hash maps with statistics to global hash maps (which is mutex-protected). When all worker threads are done, main thread finds 10 top entries in each global hash map (yes, this part is not parallelized), it's done in a single pass by bubbling up each entry in a separate 10-entry array. Parallelization of the partial sorting can potentially win several additional seconds for us.

The results are as follows. The program handles 45GB 218-million-lines logfile in 3 minutes 11 seconds, total consumed CPU time is 16:54, that is, ~5.5 hardware threads are busy on average (however, in reality there is a crucial difference between processing of the cached and uncached file parts). Average processing speed is 235MB/s (while disks are able to provide only 150MB/s, once again it's due to file caching). The entry contains ~1345 LOC, from which 926 are reusable code (parallel IO subsystem and hash map) and 419 are application-specific. The program contains 17 times more LOC than the initial Ruby program, and is 479 times faster.

EPUB/media/file49.com_2FdGJo00YE20iiBiYmFE5TM4TZ73Qk75b4l_hONGguHOMrT96vWZmrn8I0UTamnjOwsBxm9Y2NkdZ3LpEda98HZPUz82hzTRINcoaIYjrsD-ENTO-X_3Dw1280

EPUB/media/file41.com_2Fhc7ahaomPKETTPDVpJy_jU2gqYLMEA8fMRoU26ZvMq9scb6yBUYrOV08ykUCDCvhRvmtbO-t1bgLVN6lf3as0GZ88McHQNbpeliEazEG4981AD2z_3Dw1280
e - b o, e

Elapsed Time (secs) @ Average Concurrency @
1700
1522
£ 550 3 ous
" 333 567
22 s
om0

Vo2 s 1 V24 e

Cores coren

Performance Improvement @ Throughput Scalability &
as8 sa
s 40
776 L 298
oo % 2es
£ 550 3 23
§oons S
222 “ 085

P Sr—— o - Thoughpuesealbi]
000 000

Coren Coree

EPUB/media/file35.com_2Fm75Vs-1D_PvQyil7EMueoHFDqP7HpIcPUWCB8rVA2sAMefvOw9ihZApysn1njwLa_F3vbrbRPxYo_a57PdxNSEnUqcmrgtRQ6EZgFXwtsV2-qag1_3Dw1280
PARENT TASK

COMPLETION
NOTIFICATIONS

CHILD TASK CHILD TASK STOLEN CHILD
TASK

MUST SYNCHRONIZE WITH EACH
OTHER JUST IN CASE

EPUB/media/file10.com_2FA7He6OV4Nw5gEswaP082nUu-R0jhfYNiECD2_pcBv8hBUDw6XbUAlBdFIeXXeNvODHiJEK1c5f6AoBlJ6lOwMItOnhQlFH8wJBPtVMPLhapJKadB_3Dw1280
Distributed rw mutex

per-CPU | | per-CPU | | per-CPU | | per-CPU
rw mutex | |rw mutex | |rw mutex | |rw mutex
[y L . AR
wiite lock / read lock read lock
Writer Reader Reader

EPUB/media/file43.com_2FtY80Z3AOlHM_E8Dt7-OsTkJaKSnkzWhwONgbW1hKJsuJkcvPHcCexVqZN5Mc_onQd9K1ixpB7-VHk9bDWCe6OLurDmwcO87MunhiOWqKr8SFskB9_3Dw1280
Partial Partial Partial Partial
scheduler's scheduler's scheduler's scheduler's

Remaining
centralized
scheduler's
state

EPUB/media/file37.com_2F7e5YGPavhpqRs4YgS7VgcC1liSpQQj9XMG6EFHtx0IE0KbFsXRWqQBf5fJVJPLPVZlHis7jLup3XmJF0p8Nah5gq_3olla2MQqRpVJXetd-aNBnQ_3Dw1280
& Concurrency

Function =

- Calr Function Tree.

CPU Time by Utiization:sefFw

x5

Oide @roor 0ok Bideal @over

Modue

oncurrent_skiplst<entry_t, entry_traits_tsinsert
emember _state

gic<1U84, 0, 1, 0>::next_tumn

gic<2U64, 0, 1, 0>::next_tumn

_vinring_postion
acktrack

ic<2U64, 0, 0, -1 >:inext_turn

gic<2Us4, 1,0, 0>::next _tumn

gic<3064, 0, 0, 0>::next_tun

sert_state

oncurrent_skplst<entry_t, entry_trakts_t>:aloc_node_slon
gic <14, 1, 1, 0>:next_tumn

gic<2U64, 0, 0, 1>:next_tumn

aic<2Lid, 1, 0, 0>tiprobe

cheduer <cantext._t>tiloop

aic<3LI4, 0, 0, 0>1:probe

alcete_moves

ump

aic<2Lid, 0, 0, 1>tiprobe

cheduer <cantext_t>t thread

deadock,

Selected

43.117; I s/ipist <xe

24,319
53775 B
19015l
1.es6s
1e0zs B
127350
101350
06251
os1251
o881
05275
o971
047351
0.32651
o151
o815
0.20551
o875
o.1415]
0.0945|
0.0945|
0.0945|
0.0685|
o.ot6s|
00165

skiplst.exe
skiplst.exe
skiplst.exe
skiplst.exe
skiplst.exe
skiplst.exe
skiplst.exe
skiplst.exe
skiplst.exe
skiplst.exe
skiplst.exe
skiplst.exe
skiplst.exe
skiplst.exe
skiplst.exe
skiplst.exe
skiplst.exe
skiplst.exe
skiplst.exe
skiplst.exe
skiplst.exe
skiplst.exe
skiplst.exe
skiplst.exe
siplst.exe

EPUB/media/file34.com_2FA-o9L1RbWrMahP24irGlGsl9NLKYp51Zo5iGQhmgJ2PdMCi2NLgT2T7cKyEi0YzpA0Eo_y8wPmvKcu4WGwmojyBM4AyB8yStgcVxx5hesyX-HoQM_3Dw1280
INFREQUENT
POTENTIAL STEAL
\ MUST SYNCHRONIZE WITH EACH

/ OTHER JUST IN CASE
LocaL
END

pop

PUSH

EPUB/media/file0.com_2FBmo3s9e2VewCWdCtw-n_rYAECZpLFVvA1QyAK1ZWe1ref9Wsm3_BVkKpEboiDiH5VOSgDcLNTZL6-WyHDXfxW7vdKP2sCy_ycMaJfo6BOwtNNNoY_3Dw1280
290 readers
el

EPUB/media/file18.com_2FwHZMV7EnpMHQSRCiHU8c3UYdW6mjlKc6WvW8E67X2KutkrvcXxqXRsNbZyIBLEvRbXjlLtyiUXad_SnY6ANgabRvVrbQWN1Zkk1lDc49EAfw2b61_3Dw1280
Main thread
(generates and consumes)

Worker thread Worker thread
(transfers) (transfers)

Worker thread
(transfers)

EPUB/media/file12.com_2FIPJpdUs94TqchtIhnkBBrimNOM9a4W0vDo2zs1u075-nG30KnJjxIJOoXv7xKMT_1vSWZe8tAm27JKpkj1ihoHkSroq0AYS0w8mA1eWGUb2JeYVg_3Dw1280
Throughput, opisec.

E

2500000

0m000

15000000

10000000

000000

RW Mutex Scalability

(on a4 processors x4 cares AMD rmachine)

12 3 4 s 8 7 8 9 10 M 12 13 14 15 1B
Thread count

pitreact10) =dstre(10) ~Hhresi() —dsiritedS0) =pthvesc(100)
~ distibuted(100) ==phveai(S00) —phread(1000) =pihread(10000)

EPUB/media/file48.com_2FISl9IsxANaorvFu73N-2-QyH74ZvLvVXnbIMJVXDr8haiQ_IBF9ipBBMIas6Mjs3vh3sv-Hc-zv0GHmscvCe9nXkBxYDENz1i3jNfYFxNE68ewKp_3Dw1280
‘ to aweb-service or whatever

‘ to a web-service or whatever

ticket ‘ to aweb-service or whatever
dermux

‘ to a web-service or whatever

EPUB/media/file40.com_2FNKMXirA-QvX6RyThfgjRH6rDVo8Hgnwfa5oWb1jrY9Q6-TczET7KUywhq7CjKLr4qcpH8jdc89Sm2Ny-3m5qmrIkMKxfEthpEYGFKuRh7UN_x9Qr_3Dw1280
16000

14000

12000

10000

e

6000

a0

2m0

s

Soctinl Sided

%

2

EPUB/media/file23.com_2FHkpMZS9yxCBC-VnuWRKrsZDJGRkIYczFpGQhCuKR6HyXRqeV8tnICLisbfQansEdrPXDfFedOu-xWElNkB8lTQuVqsbd0qeaISS2bdlZ868o9Jrs_3Dw1280
strong pointer

Strong |bas
counter |counter

nner
counters

auter

counter

basic pointer

EPUB/media/file50.com_2FLN5Ul3K8TWHIVZnMC_eEtWIHswev_z6h7w-8wNQmB9zPSdoes_0lo0_JsVwtWS8hs8FevVej-CFs106f-c76JqI19Il8_us8WiS1dmrsm2JkRKO9_3Dw1280

EPUB/media/file42.com_2F-BL3y585wf9jJt5KRW_04kcv5TiVFb3FlBu8DN6fCHGBIj7Nv2h04E-TIJLnQeqNhgkqScuvRV-K5kG-yhUuFIwShBxjP3ZKAyCvsJP_0E5F_ova_3Dw1280

EPUB/media/file22.com_2FDNg3Q5ttzDipabt8ol2bEIkjeURI6y0hjlzoT4utGSNTMhkLHIoKKl6HyIlll6wm3LbNqHwWuMU5JekfbxH348ZWQI-Aqr-txdtryicRUC1NFiyX_3Dw1280

EPUB/nav.xhtml

1024cores

		About This EPUB File		Home

		Lockfree Algorithms

		Introduction

		First Things First

		Your Arsenal

		So what is a memory model? And how to cook it?

		Visibility

		Ordering

		Applied Ordering

		Compiler vs. Hardware

		Scalability Prerequisites

		False-sharing

		Reader-Writer Problem

		Multi-Version Concurrency Control

		Optimistic Concurrency Control

		State Distribution

		Improved Lockfree SeqLock

		Wait-free Object Storage with Single-word Atomic Operations

		Distributed Reader-Writer Mutex

		Producer-Consumer Queues

		Queue Catalog

		Bounded MPMC queue

		Intrusive MPSC node-based queue

		Non-intrusive MPSC node-based queue

		Unbounded SPSC Queue

		Case Study: FastFlow Queue

		Priority Queues

		Eventcounts

		Lazy Concurrent Initialization

		Elimination of Memory Fences

		Object Life-time Management

		Differential Reference Counting

		Differential Reference Counting: Implementation

		Tips & Tricks

		Spinning

		Per-processor Data

		Pointer Packing

		Faster Fibers/Coroutines

		Thread Completion Notifications

		Induced Deadlocks

		SIGSEGV/SEH Trap

		Links

		

				

		

		

		Cache-Oblivious Algorithms

		Cache-Oblivious Algorithms: Implementation

		Concurrent Skip List

		Scalability Prerequisites

		Skip List Design

		Lockfree Reader Pattern

		Lockfree Insert Operation

		Node Count Maintenance

		Memory Allocation

		Parallelization - Problem Analysis

		Scheduling Strategy

		Work-Stealing vs. Work-Requesting

		Work-Distribution and Work-Balancing

		Scheduler Algorithm

		Performance Result

		Line Segment Intersection Problem

		Multi-list

		

		Multi-list Interface and Implementation

		Parallelization

		Performance Results

		Radix Sort

		Taxi Paths

		Single-Threaded Implementation

		Speeding Up

		Parallelization

		Fighting The Memory Bandwidth Problem

		Performance Results

		Scalable Architecture

		Introduction

		General Recipe

		Case Study: Actor Scheduler

		

		

		

		

		

				

		

		

		

		

				

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

				

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		Case Study: MultiLane - a concurrent blocking multiset

		Parallel Disk IO

		The Solution

		Task Scheduling Strategies

		Scheduler Example

		Wide Finder 2

 		
 Cover

EPUB/media/file55.com_2Fq750OckPYcYA7YgXan3bdc_MMfCgK3U-17vKE8FYCw_eAP0UGT12vSn46L1oqWSS0HaDjwm_FU7Ac1jg-NbWR6fkNmr7SKtfYN9d-mWNj3SGT-WN_3Dw1280
40

ES

El

25

E

15

0

8 10 12 14 16 18 20 2 24 2 28 W 32 34 B 35 40 42 4 45 45 S0 S 54 55 S 6D 62 B4 € 63 70 72 74 76 78 G0 G2 G4 65 o3 90 %2 94 B 98 100
9 1113 15 17 18 21 23 25 27 @ I 33 35 T 38 41 43 45 47 43 SN 53 65 &7 @ 61 63 65 & 63 71 73 75 77 73 ¢ 63 65 &7 @ N 93 % & 9

=acive ==blocker ~read =proc =cached

EPUB/media/file45.com_2F7zHJgtyVqHhTOGbPK8zzQwlc5cbOMT8xNp_Vkjpd1VPV3lc8fohzdgja3_owKojrpp9HxEiwtFC_IaCh-44pZxzk5lSAjzuakuZa6h9PJvtg9LRu_3Dw1280
request
processing

worker threads upaater
thread

|
|

copy & update
operation

E:J‘

I

after this point
new requests are
handled with the
upaated version of
the routing table

EPUB/media/file1.com_2FElXrO7_mPsbsDFMbKDjTLUa7gr6wBvb9PYBW7uLmk5PmTo1n1zMhoFUiot_o3tVEdjExoLmdWEEI_3VqGJRZbTrD1wm6CFDBV4HzfrVbnKMLkAjs_3Dw1280
Throughput, opises

s00conon0n

s000onoo00

4000onoo0n

3000000000

2000000000

1000000000

White Scalability

(on4 processors x4 cores AMD machine)

4 s
Thread Count

it privete St shered

%

EPUB/media/file29.com_2FhtiHU9j8rrNh7DsFdrhMcdpkRT08AjvEj4Agwz5iksl2raOK68FyMjlEXTT0m-_Z5gS7L1XeruRzA0allUwVrHjnnni1Jwgq2EUJlbcwu8po1gFG_3Dw1280
Executiontime

140000

120000

100000

o0

o0

om0

20

2 3 4 5 85 7 8 8 1 nm 12 13
Thread court

Bstraightiorward <staightforward deal ‘¥ cache_oblvious #cache_cbivious_idssl

14

15

%

EPUB/media/file2.com_2FY-ATb6K9GlTIVdxwxK6DvqZgqhTBeOOVWYq5c6ljjhKDgjKuLJunUSwatgWHulEQMH3GaaO-QivcqxoSwGI6ihSahRA32-fwTnsVgmnlhXyG3fYu_3Dw1280
Throughput, opsec

1300000000

1500000000

1400000000

1200000000

1000000000

sooooman

soo00man

4no00ma0

200000000

RMW Scalability
(on 4 processors x 4 cores AMD maching)

4 s
Thread Count

BRI private SRMW seredt

%

EPUB/media/file36.com_2FNfuFxY29QkxLKldYMIhon6mtJuj-tDU5tkGo5Mpg3I8KdEOElJ3vZNe49ZPu-qv79QAwI6tNb3bNaypPXpuK0Jmlbwe_qUTsZ0N0OMzaw_u8qRAa_3Dw1280
e = O
Elapsed Average Concurrency @
s
st
£ st 8 o
o 2118 871
o o
Performance Improvement @ Throughput Scalability &
o
8 o \ i
§ 1Y S e
0.00 0.00 /
o

EPUB/media/file54.com_2FnjXj2BxCgfrKiJjRBwuD5r_39HTXOSrK55KR_ApHuqKc56WgtNOpD2_p9f69tumjKM29IR41bexH0AdENIRGvd2xXTReYCuZIYOBmxKecilwhTT-_3Dw1280
3 7 1115 18 23 27 31 35 39 43 47 51 S5 53 63 &7 71 75 79 83 &7 91 85 G 108 107 111 15 119 123 127 131 135 138 145 147 151 155 159 163 167 171 175 179 183 157 191 135 199
178 9 1317 21 25 23 3 W 4 45 49 53 57 61 65 63 73 77 B 85 89 9 87 101 105 108 M3 17 120 125 123 138 1 141 145 143 153 157 161 165 169 173 17 181 185 189 193 187 201

=actve ==bhoked read =prac =cached

EPUB/media/file47.com_2Fz2hpctp8diGwevJ-fH52_aGtIit3aslnp2y60sC2ZjYnZ1QKrVr9ubllytHrp9kEAiq8k0pHaPulYjt_d1R2l9wOhV0_Sa-riy8ZdA1AEzf-oI-N_3Dw1280
Underlying queues

output
L L L LT/ ticket
L

EPUB/media/file44.com_2F-APafYxRvpFh8uD4Bb45_KfI5uelnc-M1Y61Wx9yxTzEB7_11im3brbjXstxZkQfxa_eawmL-Jqb2SSwIK9BEwPqaaHVGNJAme-Q4ySc_CgD4Lvo_3Dw1280
worker threads upaater

thread
request
processing|
writer announces
update intention
some writer waits
readers for readers
are idling
all readers are done
all
resders
ree inting update opration
update is finished

EPUB/media/file38.com_2FhscPxAjfkTf-4DQ_a1kX3iCDcC-ImAsUjyWRhE9zDcQWqO0Jhvu1pBiispQJvRV6PDWyy9P7BXllYK1LhRcqRVS9C8aIMk7kRyrt7-_g7Ea8aUkP_3Dw1280
elements

superblocks

lists

array of lists

multilist

TLS (per thread)

TLS (per thread/list)

EPUB/media/file16.com_2FXnB8IsNczovIpP-vPUFelu7YK-IJKv1bYlq0ngs0bFu2bR-Uk7BTr01lXPqB8tJcjldFUIDMKOB4aGZo2r1QCzkk39NxkXu76ljffl6eUlucJite_3Dw1280
msg msg msg msg msg msg

\ //«/ \ .(//
N N\ NN

buffer[pad| read [pad| write @ @ buffer[pad| read |pad| write

® @
read |pad| write [pad] links cache|-—> cache
®

@) read [pad[write [pad cache|-—> cache

EPUB/media/file4.com_2FiKEqbWalUObeWWjatoUBO6I9h0EA6SZupwz6_79fMa6V7BhuXeFLYpNaL18BZN3KFroQL3Jy-WL8ve3e-2tNpDWRafnzT9X2Npqb7OOZYgnCFjhX_3Dw1280
Throughput, opisec

Operation Scalability
(on 4 processors x4 cores AMD maching)

2500000000

200000000

15000000000

100000000

so0conom

1 2 4] 18
Thread Count

B eadprivete Read shored Vinhte rivete “SAte sharesd =RMWprivate <RI stared

EPUB/media/file25.com_2F4gFqzVJGa6GQ6JCR-CV6Ov-fVz8FYuzbpiEH3obYdAWbT8FJw09h2gO3OlQoC9xBctTfkZxSHZHcDOJgSMh6chan4eyu6eu_OhyaooPGd4n2d0h1_3Dw1280
(Memory |
] [] [] [] [

(cache| [cache] [cache| [cache|

[core | [core | [core | | core |

EPUB/media/file24.com_2FWM6l-3epKbDiNlCEshGrXw69Ez7ne96JujJSHTkGGpWC9j_u8kzZyj8H2QQADefUiCopTPjwoWvhOCv_tAenfK8PYDHWIOM_K6BWl3Bkntg4bv1Y_3Dw1280
Capacity

I
L1 cache

Latency

EPUB/media/file8.com_2FnX_bjHRxEkKciI6sktBuDwhSDPUgtJi83Q-fIBuxMnH_--wZY3_01cQvkj-gBAtuNxp1Qg_3Dw1280
Throughput, op/sec

90000000

soonomo

7o00m0

soom0mo

soom0mo

4no00mo

000000

2000000

1000000

2 4
Thread Count

pitvead mutex § ihvead spiriock t ¥ pread rwlock t

%

EPUB/media/file53.com_2FZFEqDZRAoGctTpxRP6tlrz6WttCn4G_Dg2cJu8PsITKQzW7uOUs9fmtvSfs-f2vkG33AdZ3L3fNtIUbkKVuv2SUbN9Z1csARk8vW7QzC8sikAXxC_3Dw1280

EPUB/media/file20.com_2Fzqw2WUi5BfUR16fNKA_-IRxcfJ5FSaP59WYQzfCs4ADqI-u4AnMvaXBpnUdXVYbcoOpJGyA-lclRRJMP_hsF-F8Ordx_tbnLmXAAWw_gL8VO3Ph8_3Dw1280
Throughput, megims.

e

aa00

om0

300

e

200

20

15000

10000

00

8 3 10
Thread count

=y = tastiiow

"

2

13

10

15

18

EPUB/media/file19.com_2FD0NHIK6pqkqGdJzL-BhnQ39o5jYa3gHlLBIkYLYMEcBYun7Qs7wgxPztdKK8DKxMrHWUjfpoz1p-0OBRtcOoznVeJotq86AC8_apdZRRrOEGDZbt_3Dw1280
Throughput, msg/ms

140000

120000

100000

e0m

e0m

aa0m

20m

6

78 e
Thread count

—y ==fastfiow

0

1"

2

13

10

15

%

EPUB/media/file56.com_2Fln-p77jzWeTht6hLZYrvA4zuMTbrtuvuLer5B5c2XgMYY7FOwN8Re9S0LBW_5ii_mpUavPdkQaugsDiKLkLy29vaoGzof4DbfcsPGTEmZIVe9gzz_3Dw1280
35

El

25

E

15

0

s
s

0

2
1"

13

14
15

"

7

18 20 22 20 2 B M 32 34 B B 40 42 44 45 45 S0 52 S4 % S8 60 62 64 65 68 70 72 T4 75 73 60 G2 B G5 65 %0 92 % 95 98 100

1 2

ERECRE N

EJECNE]

4345 47 49 5 S B T 59 6

—active —blocked ~read —pros =cached

6 65 & 69 7

77 7778 8

& o5 7 89 9

@ ® o o

EPUB/media/file58.com_2FAjjGw_ck2uHm7qL7vUG5WUnVOp8Tc-Urgmxs8LAjDMoVGgxAZnwNuiWc3KKEU9e3aGgfOduPLBR3M7OxEGAofhZBr6Aew_xx5-ukE0-hUIOYMitd_3Dw1280
403. That’s an error.

Your client does not have permission to get URL /AjjGw_ck2uHm7qL7vUG5WUnVOp8Tc-Urgmxs8LAjDMoVGgxAZnwNuiWc3KKEU9e3aGgfOduPLBR3M7OxEGAofhZBr6Aew_xx5-ukE0-hUIOYMitd=w1280 from this server. (Client IP address: 34.168.55.53)

Forbidden

 That’s all we know.

EPUB/media/file6.com_2FSO4PVip5ZdpmngIHPmWDlgYPX9uy-SNeAVrB8PDvnQJcbISR5ixP46TmUlanF3VWISvYSFpwYN1_s-Y28n_UlJZoXPQX375F1GKVDbZ06LvVDat6_3Dw1280
Thread execution

Load-acquire

EPUB/media/file57.com_2FKO4dqxpf33c6Uf6OwUma0yMRcMVwS33jusERv3lB3qkc6cQLPBIfeduljD71EPSLA6mV1EosQNVLBMKN9UpR0s2vje6ZU-yBshZDdoewu17U0CCD_3Dw1280
403. That’s an error.

Your client does not have permission to get URL /KO4dqxpf33c6Uf6OwUma0yMRcMVwS33jusERv3lB3qkc6cQLPBIfeduljD71EPSLA6mV1EosQNVLBMKN9UpR0s2vje6ZU-yBshZDdoewu17U0CCD=w1280 from this server. (Client IP address: 34.168.55.53)

Forbidden

 That’s all we know.

EPUB/media/file32.com_2FXDTyM7CLNoiQTeKFLQqM_FVpgXA7XBzbgsvpvnZyvStZYYDqWiJ3wUy7nV9Dt3HfX7IlRHc2PcVx_PupHqiZqK41DJzuV9P8R6i9Mp_RfGsJsf2P_3Dw1280
S

>

>

gl

HE R EEE R E ™

EPUB/media/file59.com_2Fc2AM08V5w3tSu5sEdhRrXdl84afgLj9sJSgZZ6pMkGaFzWdflldvkeKqD7f9vdnParkgvebUqNLiBURLu_l5IkQdX2Upfuksr1dSa1WcBhbEsJ-V_3Dw1280
403. That’s an error.

Your client does not have permission to get URL /c2AM08V5w3tSu5sEdhRrXdl84afgLj9sJSgZZ6pMkGaFzWdflldvkeKqD7f9vdnParkgvebUqNLiBURLu_l5IkQdX2Upfuksr1dSa1WcBhbEsJ-V=w1280 from this server. (Client IP address: 34.168.55.53)

Forbidden

 That’s all we know.

EPUB/media/file15.com_2Ft8rGBgIzSmd6baVVxZcD8s-Fqzs1riQ7PfRxmYGMsWR5pb-C6Inn2woSyVM15cLDEaT92OeJeOeTynZNdL3v81C1qT6AneC8H5ufmDuKkbyMNSkh_3Dw1280
Throughput, opisec

50000000
aso0om0
amomo
aso00m0
aom0omo
2500000
200000
1500000
+0m0m0

Er

12 3 4 s B 7 8 8 1w 1 12 13 1 15 18
Thread count

Bpihvead(100) @ dstbued(100) Vplhresd1000) Hdisrbuted(1000) pthves10000)
< istrbued(10000) Hrandom(100) Erandon(1000) rendom(10000)

EPUB/media/file27.com_2FvgC0qg8nD_s96WZ0bUSZcNex4_8AUve8nMLUT8ZW8u52E5RQMyHU8KxqNK10tP7BOVDCoxoi42p03ZTN_PIQL1Hs1f1vcEQlvIis7rAUW_O5qCzj_3Dw1280
Whole dataset

EPUB/media/file3.com_2FOiQPC16QSNWi7UO_LyS-OneOhKCVPh1TC1hh22v1WfAg_QK8m_sKQ48NwztkFUlj-tLVc1qhy7KEO1JY_RMkU886wrTR5ZxrOJdAzfdFl08yisgq_3Dw1280
Throughpu, opisec

Read Scalability
(on 4 processors x4 cores AMD maching)
Py

0momo0n

1500000000

1000000000

soooomaon

1 2 4 s 18
Thread Gount

BRend privte *Read shored

EPUB/media/file31.com_2FLnhArobZiLvixwcNKKVpuwyRdI1R53rYwoFaOnaVYlzcR99IdaroWEwPk816akYgB-ZV4vBYqmPeWxtXcVGhfWm8QXGF8RmRMlzjc2Ak3E4jQfKD_3Dw1280
Al

A2

A3

A4

EPUB/media/file26.com_2Fy_Xr0Gtcmhilp08owh35_GXsCkLwdmK39BeVsEwNAKcSijjbtptqu3TYAQdBiYpWR3ACh8LqAKPAK85ORZlXadKw6-8i1Qh4wN9wodUrzAgNNcxV_3Dw1280
Execuiontime, ms

140000

120000

100000

e0m

e0m

aa0m

20m

s 8 7 8 8 10
Thread count

raihticrwerd staighiorwerd Il

1"

2

13

10

15

%

EPUB/media/file51.com_2F1RjcaOqqnB6CAGtG2Vap8SIxPPExj-e4JFLDRhXD-BuxlgAhkqPyfkEiCH75xwnBAuSu7-eB5GGmGBkqWCHfY8-x45GdDjdnZBP6TtI1XqxeQfFP_3Dw1280
Process
thread pool

thread pool

data block queue

EPUB/media/file28.com_2FM64ny3QVVrisqzZkUsL3OGAFAEhw2zQ807dngz_bEFzV8TJm5VwzACV9q46UKnFQGfUgNsVftwvqrtVCqKWuuCE9DBXBDkhWh9xdr7veeR3F_Qun_3Dw1280
Dataset

The same dataset (duplicate)

EPUB/media/file13.com_2Fesg0NUhcCI3YakmILXl_wLmtWr5tDQvs45z5kWx4gAlcZ-iun7BRTlOcnBEFBTz-lrHL_hpzHDcuaIT-zpeUHkqA5luB0JFeaiRi250o5-JR7gtC_3Dw1280
Throughput, opisec

soocon0

4500000

amocong

300000

smocon0

200000

2macon0

15000000

1000000

000

R Mutex Scalability

(ona 4 processors x 4 cares AMD machine)

2 3 4 s 85 7 8 8 10 M 1@ 13
Thread count

—pifvead(10) —cistioued(10) pihveadst) —disrbuted(0)
—pifvead(100) ~dishiouted(100) —pihvesd(S00) —cisributec00)
pifveaci(1000) ~cistouc(1000) =pihvesd(10000) = cistrioutec10000)

14

15

18

EPUB/media/file39.com_2FRA-WysDJrzfrz7o73B64d25GVbGuxQLNKNpuiTRonBXsFNkluPJhUKD_pUGCc-blew-fQIbiZCUCosNYxGHFuQrrokSG_DAN6VwVoq_HbndLUeYt_3Dw1280
16000

1400

120

100

s0m

60

40m

2000

s

®achial wideal

18

EPUB/media/file52.com_2F021h8IhJYT3X1bvcG6BNzuZJW3paTKe-BoZBTDN4MmAJ0dpCqFH3eUDydoGhhNQyUDwbfjfpglHSE2P6vwvPE3Er9LA1H4FDThhYAHTXGkMduTjT_3Dw1280

EPUB/media/file46.com_2F_zPdlF5Xy9OWytEt8Yqx59YBKOCNKSJcqgbHR1tQU7u3jtObMmVMAZpzLUOkXWyc_UFgElnhiTHmnRJVLgNiuZhzJnAEi9UyECAEm6CQ-vTwe2pT_3Dw1280

EPUB/media/file21.com_2F1gx-98P3w-Oz0WqEnYkrDAxJnD-pf54z6IGb0TzFHn0ZXuCt2ERLSgbShdOK9pxRlIyK5E49RGieNtavFiLFlnYK2gNjLoCgFZ-2_WO24JwY5A9v_3Dw1280
outer inner
counter counters

EPUB/media/file9.com_2F_RiuyO9yfbRZDAOm81CmFFnNIJj7yCNuR-rp5Fi2j6JlnmKYiqburtPphIEs_i5vF9ho08upsgyMw1le5HwEhZaOfX093OXpHViE3pLf5bwaPCKU_3Dw1280
Throughput, opisec

1400000000

1200000000

10000000

sooo000n0

600000000

400000000

200000000

1 2 4 s

Thread Count

ihread_mitex § Sptresd spriock t P pthread rwbcl t # thread spirbck (cka)

18

EPUB/media/file7.com_2FCuKzbpfTj0lupMT3XpI1Q00isiff6TSqDuQVFJQrTzq0B5O6Shmy7OBqhP1Oy2Bbl6KlBQ_3Dw1280
Thread 1 Thread 2

Primary visibility
is ensured by cache-
coherency

store-release

While secondary is
ensured by correct
ordering of wemory

if (flag)
loaa-acquire

print (daca)

EPUB/media/favicon.ico

EPUB/media/file33.com_2F6oGNEAeC3I3mMs9iDN0I1Sinbztfy-OKozniyOLgkieHEmIEGEb1YWDXu6dQSSiQisSyh9skgrMaXdfYUl198DvEaroyT_twqjocQlVnXZFJSzFI_3Dw1280
INITIAL GAME STATES

GAME STATE EXPLORATION

FINAL GAME STATES

BACKTRACKING

EPUB/media/file14.com_2FsRkOP55ItLf2M9-tLlfYxbQbckvJBCJw36a_JbAFlJk7g1jreeSQ9Jmd6hEN93cyWtAHMfYRzli2tV9X3w_ltZcffYg8WM5NCdFNR2Od1N_aYtag_3Dw1280
Throughput, opfsec.

2000000

1800000

1800000

1400000

1200000

1000000

smaon

emaon

amaon

2maon

R Mutex Scalability

(ona 4 processors x 4 cares AMD machine)

2 3 4 5 8 7 8 8 10 M 2 13 14 15 18
Thread count

piead10) =dsire(10) pesd() —citibuted(S) =plrresi(IOD)
~ disrbuted(100) ==pihvead(S00) —pthres(1000) =ptfvead(10000)

EPUB/media/file5.com_2FhzFJf2Jt36Tqxw46Li0aAXJj-HhrRJHUEd35z2PwF5a4mF7uZJmVS-f2MKl694PixtoPSbYDC5Jwa7y6N9d1XnEmqwMJXOM4Wza_VBoZWosHPaAk_3Dw1280
Thread execution

Mexory
fence

EPUB/media/file30.com_2F_SmMKPSB87rf_ZHIcpvWTMsedPjpeVnNWzhxkc7IUxmbjjoQNSAhB7BO3eMVYnrhiTuw8S4yquSamuyHVd5sEqzNoHuoPHs0j-hkwVKUBwYVFv1A_3Dw1280
AlxB1 | A1xB2
Al A2 B1 B2 + +
A2xB3 | A2xB4
A3xB1 | A3xB2
A3 | A4 B3 | B4 + +
AdxB3 | AdxB4

EPUB/media/file17.com_2FSv6zs9XgLYCsRc4-GUAS_XdWsFQWf6LePffiHm0hx70oJ0m_Jvv0UJuGt8mWIj5Lv1Um9bnGmm-ansuX0oYXAwWQoElzmK_twkj80Bcbkld5wiBG_3Dw1280

EPUB/media/file11.com_2FakK7u26SSDQHsOifieCX3vYHqK56ienxWWaYDakaWIQ_Zeb79_G2-ykWtcXsU4nVfKqhVwQoYZuhygoMGdY0y4Xkymi4qaqbxr-k9vGqhXLFCYFI_3Dw1280
Throughput opisec

R Wutex Scalability

(on a4 processors x 4 cares AMD rmachine)
somoomo

250000000

200000000

150000000

100000000

sooomo

12 3 4 5 85 7 8 3 W M 2 13 W 15 8

Thread count

—pitreact10) distbued(10) —plvesi(SD) —dstrinuted(S0) =plvei(10D) —distibuted(100)
=pitreactS00) ~cistibued(S00) =pireai(1000) = dstriutec1000) ==pireai(10000) = distibuted(10000)

